-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNFA.m
150 lines (134 loc) · 4.73 KB
/
NFA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
function [] = NFA(dataseth,datasetr,goObj,GOs,ECw )
%predicting noisy GO annotations using evidences and sparse representation
% Chang Lu College of Computer and Information
% Science, Southwest University. Contact [email protected], [email protected]
%%%%%%%%%%
% goObj: gene ontology read from GO file (obo format)
% GOs: GO term id for each column of the protein-function association matrix
% dataseth: Name of the dataset archived on 2015-11-09.
% datasetr: Name of the dataset archived on 2016-04-11.
%%%%%%%%%%
fprintf('start %s at %s\n,==Method:%s==',dataseth, datestr(now),'NFA');
load(dataseth);
load(datasetr);
selGOs=GOs;
size_go=length(selGOs);
lambda=0.5;
if size_go==3958
gnd_h=hGO.ccLabels;
gnd_r=rGO.ccLabels;
gnd_hec=hGO.ccECs;
rootGO=5575; %ccroot
end
if size_go==10217
gnd_h=hGO.mfLabels;
gnd_r=rGO.mfLabels;
gnd_hec=hGO.mfECs;
rootGO=3674; %mfroot
end
if size_go==26382
gnd_h=hGO.bpLabels;
gnd_r=rGO.bpLabels;
gnd_hec=hGO.bpECs;
rootGO=8150; %bproot
end
%only test on annotated proteins
index=find(sum(gnd_h,2)==0);
gnd_h(index,:)=[];
gnd_r(index,:)=[];
gnd_hec(index,:)=[];
minT=1;% the minimum size of nember proteins
fun_stat_h=sum(gnd_h,1);
fun_stat_r=sum(gnd_r,1);
sel_funh_idx=find(fun_stat_h>=minT);
sel_funr_idx=find(fun_stat_r>=minT);
sel_fun_idx=union(sel_funh_idx,sel_funr_idx);
selGOs=GOs(sel_fun_idx);
gndh=gnd_h(:,sel_fun_idx);
[Ndata, Nfun]=size(gndh);
gnd_r=gnd_r(:,sel_fun_idx);
gnd_h=gnd_h(:,sel_fun_idx);
gnd_hec=gnd_hec(:,sel_fun_idx);
num_perprotein_noise=zeros(Ndata,1); %the number of noisy annotations of each protein
gnd=gnd_r-gnd_h;
sub_goObj=getSelGoObj(selGOs,goObj);%filter the goObj to speedup computation
childGOs=getChildGOs(selGOs, selGOs,sub_goObj);
parGOs=getParentGOs(selGOs, selGOs,sub_goObj);
%% calculating the number of noisy annotations
for ii=1:Ndata
idx=find(gnd(ii,:)==-1);
num_perprotein_noise(ii)=length(idx);
end
%% Identifying Noisy Gene Ontology Annotations
% [gnd_hw] = EvidenceCode(gnd_h, gnd_hec, selGOs, Ndata, parGOs);
[gnd_hw] = EvidenceCode1(gnd_h, gnd_hec, selGOs, Ndata, parGOs, ECw);
S=SparsityW(gnd_hw',lambda); %Sparse representation
S=(S+S')/2;
V=S * gnd_hw;
idx_h=find(gnd_h==0);
V(idx_h)=0;
V=V+gnd_h;
V=1./V;
V(V>=inf&V<=inf)=0;
[val_V,idx_V]=sort(V,2,'descend');
newgnd=gnd_h;
for ii=1:Ndata
noise_idx=idx_V(ii,1:num_perprotein_noise(ii));
childnoise=childGOs(noise_idx);
newgnd(ii,noise_idx)=0;
for jj=1:length(childnoise)
child_idx=getGOIdx(childnoise{jj},selGOs);
newgnd(ii,child_idx)=0;
end
end
%% compute MacroP, MacroR and MacroF; MicroP, MicroR and MicroF;
Y=gnd_r;
Z =newgnd(1:Ndata,:);
[tp,per_pre,per_re,per_f1,Miprecisions,Mirecall,num_candidate]=PRF(gnd_h,Y,Z);
num_noise=length(find(num_perprotein_noise>0));
[maprecisions,marecalls,mafvalue,miprecisions,mirecalls,mifvalue,ave_maprecision,ave_marecall,ave_mafvalue,ave_miprecision,ave_mirecall,ave_mifvalue]=bootstrapping(tp,per_pre,per_re,per_f1,num_candidate,num_perprotein_noise);
prec_seq='tp,per_pre,per_re,per_f1,Macropre,Macrore,Macrof1,Maprecisions,Marecall,Maf1,Miprecisions,Mirecall£¬Mif1,maprecisions,marecalls,mafvalue,miprecisions,mirecalls,mifvalue,ave_maprecision,ave_marecall,ave_mafvalue,ave_miprecision,ave_mirecall,ave_mifvalue,num_perprotein_noise,num_candidate';
precision=cell(30,1);
precision{1}=tp;
precision{2}=per_pre;
precision{3}=per_re;
precision{4}=per_f1;
precision{5}=sum(per_pre)/num_noise;
precision{6}=sum(per_re)/num_noise;
precision{7}=sum(per_f1)/num_noise;
precision{8}=Miprecisions;
precision{9}=Mirecall;
precision{10}=2*Miprecisions*Mirecall/(Miprecisions+Mirecall);
precision{11}=maprecisions;
precision{12}=marecalls;
precision{13}=mafvalue;
precision{14}=miprecisions;
precision{15}=mirecalls;
precision{16}=mifvalue;
precision{17}=ave_maprecision;
precision{18}=ave_marecall;
precision{19}=ave_mafvalue;
precision{20}=ave_miprecision;
precision{21}=ave_mirecall;
precision{22}=ave_mifvalue;
precision{23}=num_perprotein_noise;
precision{24}=num_candidate;
stds=cell(30,1);
stds{11}=std(ave_maprecision,0,1);
stds{12}=std(ave_marecall,0,1);
stds{13}=std(ave_mafvalue,0,1);
stds{14}=std(ave_miprecision,0,1);
stds{15}=std(ave_mirecall,0,1);
stds{16}=std(ave_mifvalue,0,1);
if rootGO==5575
evalstr=['save results',filesep,dataseth, '_NFA_cc.mat precision stds prec_seq'];
end
if rootGO==3674
evalstr=['save results',filesep,dataseth, '_NFA_mf.mat precision stds prec_seq'];
end
if rootGO==8150
evalstr=['save results',filesep,dataseth, '_NFA_bp.mat precision stds prec_seq'];
end
eval(evalstr);
fprintf('\n =====finish NFA time=%s\n',datestr(now));
end