-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_scratch.py
127 lines (111 loc) · 4.22 KB
/
run_scratch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import argparse
import logging
import os
import shutil
import numpy as np
import pandas as pd
import sys
import time
from pathlib import Path
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import train_test_split
from CM2.dataset_openml import load_single_data_all
import CM2
import warnings
warnings.filterwarnings("ignore")
# set random seed
CM2.random_seed(42)
cal_device = 'cuda'
def log_config(args):
"""
log Configuration information, specifying the saving path of output log file, etc
:return: None
"""
log_name = args.log_name
exp_dir = 'search_{}_{}'.format(log_name, time.strftime("%Y%m%d-%H%M%S"))
exp_log_dir = Path('logs') / exp_dir
# save argss
setattr(args, 'exp_log_dir', exp_log_dir)
if not os.path.exists(exp_log_dir):
os.mkdir(exp_log_dir)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(exp_log_dir / 'log.txt')
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
def parse_args():
parser = argparse.ArgumentParser(description='CM2-sup-scratch')
parser.add_argument('--log_name', type=str, default="CM2_scratch", help='task name')
parser.add_argument('--task_data', type=str, default="./example/cmc.csv", help='task dataset')
args = parser.parse_args()
return args
_args = parse_args()
log_config(_args)
skf = StratifiedKFold(n_splits=5, random_state=42, shuffle=True)
all_res = {}
task_dataset = _args.task_data.split(',')
for table_file_path in task_dataset:
data_name = table_file_path.split('/')[-1]
logging.info(f'Start========>{data_name}_DataSet==========>')
X, y, cat_cols, num_cols, bin_cols = load_single_data_all(table_file_path)
X = X.reset_index(drop=True)
y = y.reset_index(drop=True)
num_class = len(y.value_counts())
logging.info(f'num_class : {num_class}')
cat_cols = [cat_cols]
num_cols = [num_cols]
bin_cols = [bin_cols]
idd = 0
score_list = []
for trn_idx, val_idx in skf.split(X, y):
CM2.random_seed(42)
idd += 1
train_data = X.loc[trn_idx]
train_label = y[trn_idx]
X_test = X.loc[val_idx]
y_test = y[val_idx]
X_train, X_val, y_train, y_val = train_test_split(train_data, train_label, test_size=0.2, random_state=0, stratify=train_label, shuffle=True)
model = CM2.build_classifier(
cat_cols, num_cols, bin_cols,
device=cal_device,
num_class=num_class,
num_layer=3,
vocab_freeze=True,
hidden_dropout_prob=0.1,
use_bert=True,
)
training_arguments = {
'num_epoch':300,
'batch_size':64,
'lr':1e-4,
'eval_metric':'auc',
'eval_less_is_better':False,
'output_dir':f'./models/checkpoint-scratch',
'patience':30,
'num_workers':0,
'device':cal_device,
'flag':1,
'warmup_steps':5,
}
logging.info(training_arguments)
if os.path.isdir(training_arguments['output_dir']):
shutil.rmtree(training_arguments['output_dir'])
trainer = CM2.train(model, (X_train, y_train), (X_val, y_val), data_weight=[True], **training_arguments)
eval_res_list = trainer.train((X_test, y_test))
ypred = CM2.predict(model, X_test)
ans = CM2.evaluate(ypred, y_test, metric='auc', num_class=num_class)
# assembling the top 5 models on the validation set
ans[0] = max(ans[0], max(eval_res_list[-5:]))
score_list.append(ans[0])
logging.info(f'Test_Score_{idd}===>{data_name}_DataSet==> {ans[0]}')
all_res[data_name] = np.mean(score_list)
logging.info(f'Test_Score_5_fold===>{data_name}_DataSet==> {np.mean(score_list)}')
mean_list = []
for key in all_res:
logging.info(f'meaning_5_fold=>{all_res[key]}=>{key}')
mean_list.append(all_res[key])
result_df = pd.DataFrame(mean_list, columns=['result'])
res_path = str(_args.exp_log_dir) + os.sep +'res.csv'
result_df.to_csv(res_path, index=False)
logging.info(f'meaning all data=>{np.mean(mean_list)}')