Symbolic Math |
|
💡 syms |
Define symbolic variables for algebraic manipulations. |
Example: syms x y |
|
💡 solve |
Solve algebraic equations symbolically. |
Example: eqn = x^2 - 4*x + 4 == 0; sol = solve(eqn, x); |
|
💡 diff |
Compute derivatives symbolically. |
Example: f = x^2 + 2*x + 1; df = diff(f, x); |
|
💡 int |
Compute integrals symbolically. |
Example: f = x^2 + 2*x + 1; F = int(f, x); |
|
Numeric Calculations |
|
💡 sum |
Calculate the sum of elements in an array. |
Example: A = [1, 2, 3, 4, 5]; total = sum(A); |
|
💡 prod |
Calculate the product of elements in an array. |
Example: A = [1, 2, 3, 4, 5]; product = prod(A); |
|
💡 mean |
Compute the mean (average) of data. |
Example: data = [75, 80, 85, 90, 95]; avg = mean(data); |
|
💡 std |
Calculate the standard deviation of data. |
Example: data = [75, 80, 85, 90, 95]; deviation = std(data); |
|
Plotting |
|
💡 plot |
Create 2D plots of data. |
Example: x = linspace(0, 2*pi, 100); y = sin(x); plot(x, y); |
|
💡 ezplot |
Create plots of symbolic expressions. |
Example: syms x f = x^2 - 4*x + 4; ezplot(f); |
|
Linear Algebra |
|
💡 inv |
Compute the inverse of a matrix. |
Example: A = [1, 2; 3, 4]; B = inv(A); |
|
💡 det |
Calculate the determinant of a matrix. |
Example: A = [1, 2; 3, 4]; determinant = det(A); |
|
Numerical Methods |
|
💡 fminunc |
Find the minimum of a function numerically. |
Example: fun = @(x) x^2 - 4*x + 4; x0 = 0; % Initial guess xmin = fminunc(fun, x0); |
|
💡 ode45 |
Solve ordinary differential equations (ODEs). |
Example: dydt = @(t, y) -2*y; [t, y] = ode45(dydt, [0, 5], 1); |
|
Statistics |
|
💡 normpdf |
Compute the probability density function of a normal distribution. |
Example: mu = 0; % Mean sigma = 1; % Standard deviation x = -3:0.1:3; pdf = normpdf(x, mu, sigma); |
|
💡 binopdf |
Compute the probability mass function of a binomial distribution. |
Example: n = 10; % Number of trials p = 0.5; % Probability of success k = 0:10; pmf = binopdf(k, n, p); |
|