-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
132 lines (98 loc) · 5.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import argparse
import numpy as np
import torch
import torch.nn as nn
from torch.optim import Adam
from torch.utils.data import TensorDataset, DataLoader, SubsetRandomSampler
from sklearn.model_selection import KFold
import funcs
from models import AlexNet
torch.manual_seed(42)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# root_path = 'D:/Shelly\'s/Spectograms_77_24_Xethrue/'
# subfolders = ['activity_spectogram_77GHz', 'Spectrograms_24GHz', 'spectogram_Xethru']
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--root', default='D:/Shelly\'s/Spectograms_77_24_Xethrue/', type=str,
help='root folder of data')
parser.add_argument('--subfolder', default='activity_spectogram_77GHz', type=str,
help='Images folder')
parser.add_argument('--epoch', default=10, type=int,
help='number of training epoches')
parser.add_argument('--batch_size', default=8, type=int,
help='number of batch size')
parser.add_argument('--kfolds', default=5, type=int,
help='number of K folders')
parser.add_argument('--lr', default=1e-3, type=float,
help='learning rate')
parser.add_argument('--save_name', default='k_cross_model.pt', type=str,
help='the name of saved model')
parser.add_argument('--spatial', default='True', type=str,
help='True is using SpatialGate')
parser.add_argument('--pretrain', default='True', type=str,
help='True is loading pretrained model')
def main():
args = parser.parse_args()
print ("args", args)
if not os.path.isdir(args.root+args.subfolder):
raise NameError("The directory does not exist. Please check inputs of --root and --subfolder args.")
num_epochs=args.epoch
batch_size=args.batch_size
k=args.kfolds
splits=KFold(n_splits=k,shuffle=True,random_state=42)
foldperf={}
classes = [x[0].replace('\\', '/').split('/')[-1] for x in os.walk(args.root+args.subfolder)][1:]
images, labels = funcs.load_data(args.root, args.subfolder, classes)
indices = torch.randperm(images.size()[0])
images=images[indices]
labels=labels[indices]
dataset = TensorDataset(images, labels)
for fold, (train_idx,val_idx) in enumerate(splits.split(np.arange(len(dataset)))):
print('Fold {}'.format(fold + 1))
train_sampler = SubsetRandomSampler(train_idx)
test_sampler = SubsetRandomSampler(val_idx)
train_loader = DataLoader(dataset, batch_size=batch_size, sampler=train_sampler)
test_loader = DataLoader(dataset, batch_size=batch_size, sampler=test_sampler)
model = AlexNet(num_classes=len(classes), spatial=args.spatial, pre_trained=args.pretrain)
model.to(device)
optimizer = Adam(model.parameters(), lr=args.lr)
criterion = nn.CrossEntropyLoss()
history = {'train_loss': [], 'test_loss': [],'train_acc':[],'test_acc':[], 'cms': []}
for epoch in range(num_epochs):
train_loss, train_correct = funcs.train_epoch(model,device,train_loader,criterion,optimizer)
test_loss, test_correct, cm = funcs.valid_epoch(model,device,test_loader,criterion)
train_loss = train_loss / len(train_loader.sampler)
train_acc = train_correct / len(train_loader.sampler) * 100
test_loss = test_loss / len(test_loader.sampler)
test_acc = test_correct / len(test_loader.sampler) * 100
print("Epoch:{}/{} AVG Training Loss:{:.3f} AVG Test Loss:{:.3f} AVG Training Acc {:.2f} % AVG Test Acc {:.2f} %".format(epoch + 1,
num_epochs,
train_loss,
test_loss,
train_acc,
test_acc))
history['train_loss'].append(train_loss)
history['test_loss'].append(test_loss)
history['train_acc'].append(train_acc)
history['test_acc'].append(test_acc)
history['cms'].append(cm)
foldperf['fold{}'.format(fold+1)] = history
torch.save(model, args.save_name)
testl_f,tl_f,testa_f,ta_f=[],[],[],[]
cms = []
k=args.kfolds
for f in range(1,k+1):
best_idx = foldperf['fold{}'.format(f)]['test_acc'].index((max(foldperf['fold{}'.format(f)]['test_acc'])))
tl_f.append(foldperf['fold{}'.format(f)]['train_loss'][best_idx])
testl_f.append(foldperf['fold{}'.format(f)]['test_loss'][best_idx])
ta_f.append(foldperf['fold{}'.format(f)]['train_acc'][best_idx])
testa_f.append(foldperf['fold{}'.format(f)]['test_acc'][best_idx])
cms.append(foldperf['fold{}'.format(f)]['cms'][best_idx])
print('Performance of {} fold cross validation'.format(k))
print("Minmum Training Loss: {:.3f} Minmum Test Loss: {:.3f} Average Best Training Acc: {:.2f} Average Best Test Acc: {:.2f}".format(np.mean(tl_f),np.mean(testl_f),np.mean(ta_f),np.mean(testa_f)))
print('Confusion Matrix:')
np.set_printoptions(precision=3)
print(sum(cms)/len(cms))
return foldperf
if __name__ == '__main__':
foldperf = main()