forked from binzh93/fault_diagnosis_cnn_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_new.py
93 lines (71 loc) · 2.95 KB
/
predict_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch
from PIL import Image
from torchvision import transforms
from torch.autograd import Variable
import os, time
def load_all_image(test_txt_file, test_trainsform):
img_list = []
label_list = []
img_path_list = []
with open(test_txt_file, "r") as fr:
for line in fr:
img_path, cls_name = line.strip().split("\t")
img_path_list.append(img_path)
label_list.append(int(cls_name))
for k, v in enumerate(img_path_list):
img = Image.open(v)
# print(img)
img = test_trainsform(img)
img_list.append(img)
return img_list, label_list
def predict_image(image, model, device):
image_tensor = image.unsqueeze_(0)
input = Variable(image_tensor)
input = input.to(device)
output = model(input)
index = output.data.cpu().numpy().argmax()
return index
def predict(model_path, test_txt_file):
test_trainsform = transforms.Compose([
transforms.Resize((224, 224)),
# transforms.Resize((48, 48)),
# transforms.RandomResizedCrop(input_size),
# transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = torch.load(model_path)
model.eval()
correct_nums = 0
nums = 0
img_list, label_list = load_all_image(test_txt_file, test_trainsform)
since = time.time()
for k, v in enumerate(label_list):
img = img_list[k]
label = v
# img = test_trainsform(img)
pre = predict_image(img, model, device)
if label == pre:
correct_nums += 1
nums += 1
time_elapsed = time.time() - since
print("time: ", time_elapsed)
print('Testing complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print("correct_nums: ", correct_nums)
print("Test nums: ", nums)
print("Accuracy: ", correct_nums*1.0/nums)
if __name__ == "__main__":
model_path = "/workspace/mnt/group/face/zhubin/alg_code/fault_diagnosis_cnn_pytorch/model/vgg16_2.pth"
model_path = "/workspace/mnt/group/face/zhubin/alg_code/fault_diagnosis_cnn_pytorch/model/resnet_2.pth"
# model_path = "/workspace/mnt/group/face/zhubin/alg_code/fault_diagnosis_cnn_pytorch/model/alexnet_35.pth"
# model_path = "/workspace/mnt/group/face/zhubin/alg_code/fault_diagnosis_cnn_pytorch/model/vgg11_1.pth"
isCaseW = True
# isCaseW = False
if isCaseW:
test_txt_file = "/workspace/mnt/group/face/zhubin/alg_code/fault_diagnosis_cnn_pytorch/CaseW_train_data_file_2/test.txt"
predict(model_path, test_txt_file)
else:
test_txt_file = "/workspace/mnt/group/face/zhubin/alg_code/fault_diagnosis_cnn_pytorch/jiangnan_train_data_file_2/test.txt"
predict(model_path, test_txt_file)