forked from binzh93/fault_diagnosis_cnn_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cnn_vgg11.py
219 lines (162 loc) · 7.41 KB
/
train_cnn_vgg11.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import transforms
import time
import os
import copy
import torch.utils.data as Data
from torch.autograd import Variable
from my_data_loader import MyDataLoader
# from my_net import *
from my_cat_net import *
print("PyTorch Version: ",torch.__version__)
print("Torchvision Version: ",torchvision.__version__)
model_name = "vgg11"
def train_model(model, dataloaders, criterion, optimizer, scheduler=None, num_epochs=25):
since = time.time()
train_loss_list = []
train_acc_list = []
val_loss_list = []
val_acc_list = []
val_acc_history = []
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch+1, num_epochs))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
inputs, labels = Variable(inputs), Variable(labels)
# print(inputs.shape)
# print(labels.shape)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
# Get model outputs and calculate loss
# Special case for inception because in training it has an auxiliary output. In train
# mode we calculate the loss by summing the final output and the auxiliary output
# but in testing we only consider the final output.
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(dataloaders[phase].dataset)
epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
if phase == 'train':
train_loss_list.append(epoch_loss)
train_acc_list.append(epoch_acc)
else:
val_loss_list.append(epoch_loss)
val_acc_list.append(epoch_acc)
# print(train_acc_list)
# print(type(train_acc_list[0]))
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
if phase == 'val':
val_acc_history.append(epoch_acc)
print("save model...")
model_save_path = "/workspace/mnt/group/face/zhubin/alg_code/fault_diagnosis_cnn_pytorch/model/"+ model_name + "_" + str(epoch+1) + ".pth"
torch.save(model, model_save_path)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
with open("model/train_loss.txt", "w") as fw:
for val in train_loss_list:
fw.write(str(val) + "\n")
with open("model/train_acc.txt", "w") as fw:
for val in train_acc_list:
fw.write(str(val) + "\n")
with open("model/val_loss.txt", "w") as fw:
for val in val_loss_list:
fw.write(str(val) + "\n")
with open("model/val_acc.txt", "w") as fw:
for val in val_acc_list:
fw.write(str(val) + "\n")
# load best model weights
model.load_state_dict(best_model_wts)
return model, val_acc_history
input_size = 48
data_transforms = {
'train': transforms.Compose([
transforms.Resize((input_size, input_size)),
# transforms.RandomResizedCrop(input_size),
# transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize((input_size, input_size)),
# transforms.CenterCrop(input_size),
transforms.ToTensor(),
# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
print("Initializing Datasets and Dataloaders...")
# # Create training and validation datasets
# image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
# # Create training and validation dataloaders
# dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4) for x in ['train', 'val']}
# isCaseW = True
isCaseW = False
if isCaseW:
img_root_dir = ""
train_txt_path = "/workspace/mnt/group/face1/zhubin/alg_code/fault_diagnosis_cnn_pytorch/CaseW_train_data_file_1/train.txt"
val_txt_path = "/workspace/mnt/group/face1/zhubin/alg_code/fault_diagnosis_cnn_pytorch/CaseW_train_data_file_1/val.txt"
train_batch_size = 75
test_batch_size = 10
num_calsses = 10
# lr = 0.1 weight_decay=0.0005
else:
img_root_dir = ""
train_txt_path = "/workspace/mnt/group/face1/zhubin/alg_code/fault_diagnosis_cnn_pytorch/jiangnan_train_data_file_1/train.txt"
val_txt_path = "/workspace/mnt/group/face1/zhubin/alg_code/fault_diagnosis_cnn_pytorch/jiangnan_train_data_file_1/val.txt"
train_batch_size = 72
test_batch_size = 10
num_calsses = 4
# lr = 0.1 weight_decay=0.0005
train_dataset = MyDataLoader(img_root=img_root_dir, txt_file=train_txt_path, transforms=data_transforms["train"], isCaseW=isCaseW)
train_dataloader = Data.DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True)
test_dataset = MyDataLoader(img_root=img_root_dir, txt_file=val_txt_path, transforms=data_transforms["val"], isCaseW=isCaseW)
test_dataloader = Data.DataLoader(test_dataset, batch_size=test_batch_size, shuffle=True)
data_loader = {"train": train_dataloader, "val": test_dataloader}
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = MyNet(num_calsses=num_calsses)
net = net.to(device)
print(net)
params_to_update = net.parameters()
# 0.005
optimizer_ft = optim.SGD(params_to_update, lr=0.1, momentum=0.9, weight_decay=0.0005)
# Decay LR by a factor of 0.1 every 40 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=80, gamma=0.1)
# Setup the loss fxn
criterion = nn.CrossEntropyLoss()
num_epochs = 80
# Train and evaluate
model_ft, hist = train_model(net, data_loader, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=num_epochs)