-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsensor_capture.py
424 lines (311 loc) · 15.9 KB
/
sensor_capture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
#!/usr/bin/env python
# Copyright (c) 2020 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""
Script that render multiple sensors in the same pygame window
By default, it renders four cameras, one LiDAR and one Semantic LiDAR.
It can easily be configure for any different number of sensors.
To do that, check lines 290-308.
"""
import glob
import os
import sys
import pandas as pd
import threading
try:
sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % (
sys.version_info.major,
sys.version_info.minor,
'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0])
except IndexError:
pass
import carla
import argparse
import random
import time
import numpy as np
import threading
import time
import json
from spawn_utils import spawn_npc
from utils.sim_api import SensorAPI, SimulationCfg, SenseBP
from utils.callbacks.callbacks_tracker import callback_tracker_fn, save_tracker_data_fn
from utils.callbacks.callbacks_camera import callback_image_fn, save_image_data_fn
from utils.callbacks.callbacks_imu import callback_imu_fn, save_imu_fn
from utils.callbacks.callbacks_lidar import callback_lidar_fn, save_lidar_fn
from utils.callbacks.callbacks_waypoint_traj import callback_waypoints_fn, save_waypoints_data_fn
from utils.callbacks.callbacks_weather import callback_weather_fn, save_weather_data_fn
from utils.callbacks.callbacks_gnss import callback_gnss_fn, save_gnss_data_fn
from utils.helpers import get_camera_calibration_matrix
from utils.managers import SensorManager, DetectionSystem
from utils.helpers import save_json, get_camera_calibration_matrix, CustomTimer
from utils.weather import Weather, Sun, Storm
def run_simulation(args, client):
"""This function performed one test run using the args parameters
and connecting to the carla client passed.
"""
ego_vehicle = None
vehicle_list = []
timer = CustomTimer()
SIMULATE_PHYSICS = True
try:
cfg_dir_path = args.cfg_dirpath
cfg_file_path = os.path.join(cfg_dir_path, 'config.json')
with open(cfg_file_path) as f:
cfg_data_dict = json.load(f)
# Getting the world and
#cli
world = client.get_world()
#world_map = "Town10HD_Opt"
world = client.load_world(args.world_map)
original_settings = world.get_settings()
VEHICLE_MODEL_BLUEPRINT = cfg_data_dict['vehicle_bp']
FIXED_DELTA_SECONDS = cfg_data_dict['sim_step']
traffic_manager = client.get_trafficmanager(args.tm_port)
settings = world.get_settings()
traffic_manager.set_synchronous_mode(True)
settings.synchronous_mode = True
settings.fixed_delta_seconds = FIXED_DELTA_SECONDS
if SIMULATE_PHYSICS:
settings.substepping = True
settings.max_substep_delta_time = FIXED_DELTA_SECONDS/10.
settings.max_substeps = 16
world.apply_settings(settings)
bp = world.get_blueprint_library().filter( VEHICLE_MODEL_BLUEPRINT )[0]
ego_vehicle = world.spawn_actor(bp, random.choice(world.get_map().get_spawn_points()))
vehicle_list.append(ego_vehicle)
ego_vehicle.set_autopilot(True, traffic_manager.get_port())
ego_vehicle.set_simulate_physics(SIMULATE_PHYSICS)
vehicles_list, walkers_list, all_actors, all_id = spawn_npc(client, traffic_manager, sync=True, hybrid_phys=True,
filterv="vehicle.*", filterw='walker.pedestrian.*',
safe_mode=True,
car_lights_on = True,
number_of_vehicles=args.number_of_vehicles,
number_of_walkers=args.number_of_walkers,
simulate_physics=SIMULATE_PHYSICS)
################################### FIND VALID OBJECTS TO TRACK
'''
valid_tags = [carla.libcarla.CityObjectLabel.Other, carla.libcarla.CityObjectLabel.NONE, carla.libcarla.CityObjectLabel.Pedestrians,
carla.libcarla.CityObjectLabel.Buildings,
carla.libcarla.CityObjectLabel.Vegetation,carla.libcarla.CityObjectLabel.Sky, carla.libcarla.CityObjectLabel.GuardRail,
carla.libcarla.CityObjectLabel.Fences, carla.libcarla.CityObjectLabel.Other, carla.libcarla.CityObjectLabel.Poles, carla.libcarla.CityObjectLabel.RoadLines,
carla.libcarla.CityObjectLabel.Roads, carla.libcarla.CityObjectLabel.Sidewalks, carla.libcarla.CityObjectLabel.Vehicles,
carla.libcarla.CityObjectLabel.Walls, carla.libcarla.CityObjectLabel.TrafficSigns, carla.libcarla.CityObjectLabel.Ground, carla.libcarla.CityObjectLabel.Bridge,
carla.libcarla.CityObjectLabel.RailTrack, carla.libcarla.CityObjectLabel.TrafficLight, carla.libcarla.CityObjectLabel.Static, carla.libcarla.CityObjectLabel.Dynamic,
carla.libcarla.CityObjectLabel.Water, carla.libcarla.CityObjectLabel.Terrain]
'''
valid_tags = [ carla.libcarla.CityObjectLabel.Pedestrians,
carla.libcarla.CityObjectLabel.Poles,
carla.libcarla.CityObjectLabel.Vehicles,
carla.libcarla.CityObjectLabel.TrafficSigns,
carla.libcarla.CityObjectLabel.TrafficLight, carla.libcarla.CityObjectLabel.Static, carla.libcarla.CityObjectLabel.Dynamic,
]
env_obj_list = []
for tag in set(valid_tags):
env_obj_list.extend(world.get_environment_objects(tag))
################################### END FIND VALID OBJECTS TO TRACK
########################## INIT WEATHER
weather = Weather(world.get_weather())
dataset_dirname = args.world_map + f"_dataset__n_{args.number_of_vehicles}__w_{args.number_of_walkers}__s_{args.speed}"
top_level_dir = os.path.join(args.dest_path, dataset_dirname)
sensor_data_dir = 'sensor_data'
callback_mapper = {SenseBP.RGBCAMERA: {'callback_fn':callback_image_fn,
'save_data_fn':save_image_data_fn},
SenseBP.GNSS :{'callback_fn':callback_gnss_fn,
'save_data_fn':save_gnss_data_fn},
SenseBP.IMU :{'callback_fn':callback_imu_fn,
'save_data_fn':save_imu_fn},
SenseBP.LIDAR :{'callback_fn':callback_lidar_fn,
'save_data_fn':save_lidar_fn},
SenseBP.RADAR :{'callback_fn':callback_image_fn,
'save_data_fn':save_image_data_fn},
SenseBP.SEM_LIDAR :{'callback_fn':callback_lidar_fn,
'save_data_fn':save_lidar_fn},
SenseBP.DEPTH:{'callback_fn':callback_image_fn,
'save_data_fn':save_image_data_fn},
SenseBP.INSTANCE_SEGMENTATION :{'callback_fn':callback_image_fn,
'save_data_fn':save_image_data_fn},
SenseBP.SEMANTIC_SEGMENTATION :{'callback_fn':callback_image_fn,
'save_data_fn':save_image_data_fn},
}
custom_args = {'ego_veh': ego_vehicle,
'world': world,
'map': world.get_map(),
'weather': weather,
'env_objs':env_obj_list,
}
sensor_manager_list = []
sensor_dir_path = os.path.join(cfg_dir_path, 'sensors')
calibration_data_dir_path = os.path.join(top_level_dir, 'calibration')
if not os.path.exists(calibration_data_dir_path):
os.makedirs(calibration_data_dir_path)
reflection_matrix = np.array([[0, 1, 0],
[0, 0 , -1],
[1, 0, 0]])
for sensor_label_filename in os.listdir(sensor_dir_path):
sensor_label_dir_path = os.path.join(sensor_dir_path, sensor_label_filename)
for sensor_bp_filename in os.listdir(sensor_label_dir_path):
sensor_file_path = os.path.join(sensor_label_dir_path, sensor_bp_filename)
sensor = SensorAPI.read_from_file(sensor_file_path)
sensor_manager = SensorManager(world,
sensor_bp_name=sensor.sensor_bp, sensor_options=sensor.options,
transform=carla.Transform(carla.Location(x=sensor.x,y=sensor.y,z=sensor.z), carla.Rotation(pitch=sensor.pitch,yaw=sensor.yaw,roll=sensor.roll)),
callback_fn=callback_mapper[sensor.sensor_bp]['callback_fn'],
save_data_fn=callback_mapper[sensor.sensor_bp]['save_data_fn'],
custom_args=custom_args,
attach_to=ego_vehicle,
outdir= os.path.join(top_level_dir, sensor_data_dir, sensor.sensor_label, sensor.sensor_bp.split('.')[-1] ))
sensor_manager_list.append(sensor_manager)
calib_data_dict = {'label':sensor.sensor_label,
'sensor_to_veh_tf':sensor_manager.transform.get_matrix(),
'unreal_to_camcoordsys_reflection':reflection_matrix.tolist() }
sensor_category = sensor.sensor_bp.split('.')[-2]
if sensor_category == 'camera':
calib_data_dict['calib_mtx'] = get_camera_calibration_matrix(sensor.options).tolist()
curr_sensor_calib_file_path = os.path.join(calibration_data_dir_path,
sensor.sensor_label + '.json' )
save_json(curr_sensor_calib_file_path, calib_data_dict)
######################## WORLD OBJECT TRACKER ###########################################
tracker_manager = SensorManager(world,
sensor_bp_name='sensor.other.imu',
sensor_options= {
'sensor_tick':str(FIXED_DELTA_SECONDS)
},
transform=ego_vehicle.get_transform(),
callback_fn=callback_tracker_fn,
save_data_fn=save_tracker_data_fn,
custom_args=custom_args,
attach_to=ego_vehicle,
outdir=os.path.join(top_level_dir, sensor_data_dir, 'object_tracker', 'object_tracker') )
############################ WAYPOINTS ###########
waypoints_manager = SensorManager(world,
sensor_bp_name='sensor.other.imu',
sensor_options= {
'sensor_tick':str(FIXED_DELTA_SECONDS)
},
transform=ego_vehicle.get_transform(),
callback_fn=callback_waypoints_fn,
save_data_fn=save_waypoints_data_fn,
custom_args=custom_args,
attach_to=ego_vehicle,
outdir=os.path.join(top_level_dir, sensor_data_dir, 'waypoint_trajectory', 'waypoint_trajectory' ))
########################### WEATHER SENSOR ################
weather_manager = SensorManager(world,
sensor_bp_name='sensor.other.imu',
sensor_options= {
'sensor_tick':str(FIXED_DELTA_SECONDS),
},
transform=ego_vehicle.get_transform(),
callback_fn=callback_weather_fn,
save_data_fn=save_weather_data_fn,
custom_args=custom_args,
attach_to=ego_vehicle,
outdir=os.path.join(top_level_dir, sensor_data_dir,'weather', 'weather' ))
sensor_manager_list.append(tracker_manager)
sensor_manager_list.append(waypoints_manager)
sensor_manager_list.append(weather_manager)
det_sys = DetectionSystem(world, ego_vehicle,
sensor_managers_list = sensor_manager_list,
)
#################################### METEO PARAMETERS
speed_factor = args.speed
update_freq = 0.1 / speed_factor
elapsed_time = 0
#################################### END METEO PARAMETERS
#Simulation loop
call_exit = False
time_init_sim = timer.time()
frame_id = 0
for _ in range(2):
print("#"*53)
print("#### Simulation started: press 'Ctrl+C' to quit. ####")
for _ in range(2):
print("#"*53)
while True:
# Carla Tick
world.tick()
# the first frames include the setup of the carla world, so ignore this initial 'burn in period'
# by skipping these frames
if frame_id >= 50:
det_sys.save_data(frame_id)
frame_id +=1
elapsed_time += FIXED_DELTA_SECONDS
if elapsed_time > update_freq:
weather.tick(speed_factor * elapsed_time)
world.set_weather(weather.weather)
elapsed_time = 0.0
if call_exit:
break
finally:
client.apply_batch([carla.command.DestroyActor(x) for x in vehicle_list])
print('\ndestroying %d vehicles' % len(vehicles_list))
client.apply_batch([carla.command.DestroyActor(x) for x in vehicles_list])
# stop walker controllers (list is [controller, actor, controller, actor ...])
for i in range(0, len(all_id), 2):
all_actors[i].stop()
print('\ndestroying %d walkers' % len(walkers_list))
client.apply_batch([carla.command.DestroyActor(x) for x in all_id])
time.sleep(0.5)
world.apply_settings(original_settings)
def main():
argparser = argparse.ArgumentParser(
description='CARLA Sensor tutorial')
argparser.add_argument(
'--dest-path',
default='./',
help='Path to the directory in which the dataset will be placed (default: ./)')
argparser.add_argument(
'--cfg-dirpath',
default='./simsetup',
help='Path to the directory that contains the simulation setup, generated by the simulation cfg script (default: ./simsetup)')
argparser.add_argument(
'--host',
metavar='H',
default='127.0.0.1',
help='IP of the host server (default: 127.0.0.1)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
argparser.add_argument(
'-tp', '--tm-port',
metavar='P',
default=8000,
type=int,
help='traffica manager TCP port to listen to (default: 8000)')
argparser.add_argument(
'--world-map',
default='Town04',
help='default loaded world map (default: Town04)')
argparser.add_argument(
'-n', '--number-of-vehicles',
metavar='N',
default=10,
type=int,
help='number of vehicles (default: 10)')
argparser.add_argument(
'-w', '--number-of-walkers',
metavar='W',
default=50,
type=int,
help='number of walkers (default: 50)')
argparser.add_argument(
'-s', '--speed',
metavar='FACTOR',
default=1.0,
type=float,
help='rate at which the weather changes (default: 1.0)')
args = argparser.parse_args()
try:
client = carla.Client(args.host, args.port)
client.set_timeout(10)
run_simulation(args, client)
except KeyboardInterrupt:
print('\nCancelled by user. Bye!')
if __name__ == '__main__':
main()