-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpredict.py
221 lines (210 loc) · 10.8 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from typing import List, Tuple, Union, Dict
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torch_optimizer
import numpy as np
import os
from tqdm import tqdm
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from ecg_classification import *
from wettbewerb import load_references
def predict_labels(ecg_leads: List[np.ndarray], fs: int, ecg_names: List[str],
use_pretrained: bool = False, is_binary_classifier: bool = True,
return_probability: bool = True, device: Union[str, torch.device] = "cpu") -> Union[
List[Tuple[str, str]], List[Tuple[str, str, float]], List[Tuple[str, str, Dict[str, float]]]]:
"""
Function to produce predictions
:param ecg_leads: (List[np.ndarray]) ECG leads as a list of numpy arrays
:param fs: (int) Sampling frequency
:param ecg_names: (List[str]) List of strings with name of each ecg lead
:param use_pretrained: (bool) If true pre-trained (trained!) model is used
:param is_binary_classifier: (bool) If true model for two classes is utilized else four class model is used
:param return_probability: (bool) If true P(AF) is also returned as part of the result tuple (only for binary case)
:param device: (Union[str, torch.device]) Device to be utilized
:return: (Union[List[Tuple[str, str]], List[Tuple[str, str, float]]]) List of tuples including name, prediction and
probability P(AF) if utilized
"""
# Init model
config = ECGCNN_CONFIG_XL
config["classes"] = 2 if is_binary_classifier else config["classes"]
network = ECGCNN(config=config)
# Train model if utilized
if not use_pretrained:
# Load weights pre-trained on the Icentia11k dataset
try:
state_dict = torch.load("experiments/21_05_2021__12_15_06ECGCNN_XL_icentia11k_dataset/models/best_model.pt",
map_location=device)
except FileNotFoundError as _:
print("State dict not found. Download the state dict of ECG-DualNet XL (Icentia11k). "
"Link in README. Put the state dict into the relative directory "
"experiments/21_05_2021__12_15_06ECGCNN_XL_icentia11k_dataset/models/")
exit(1904)
model_state_dict = network.state_dict()
state_dict = {key: value for key, value in state_dict.items() if model_state_dict[key].shape == value.shape}
model_state_dict.update(state_dict)
network.load_state_dict(model_state_dict)
# Perform training
network = _train(network=network, two_classes=is_binary_classifier)
# Load model
else:
if is_binary_classifier:
try:
state_dict = torch.load("experiments/"
"17_12_2021__03_39_19ECGCNN_XL_physio_net_dataset_challange_two_classes/"
"models/best_model.pt", map_location=device)
except FileNotFoundError as _:
print("State dict not found. Download the state dict of ECG-DualNet XL (two class, challange). "
"Link in README. Put the state dict into the relative directory "
"experiments/17_12_2021__03_39_19ECGCNN_XL_physio_net_dataset_challange_two_classes/models/")
exit(1904)
else:
try:
state_dict = torch.load("experiments/25_05_2021__02_02_11ECGCNN_XL_physio_net_dataset_challange/"
"models/best_model.pt", map_location=device)
except FileNotFoundError as _:
print("State dict not found. Download the state dict of ECG-DualNet XL (four class, challange). "
"Link in README. Put the state dict into the relative directory "
"experiments/25_05_2021__02_02_11ECGCNN_XL_physio_net_dataset_challange/models/")
exit(1904)
# Apply state dict
network.load_state_dict(state_dict)
# Init dataset for prediction
dataset = PhysioNetDataset(ecg_leads=ecg_leads, ecg_labels=["A"] * len(ecg_leads), fs=fs,
augmentation_pipeline=None, two_classes=is_binary_classifier)
dataset = DataLoader(dataset=dataset, batch_size=1, num_workers=0, pin_memory=False, drop_last=False, shuffle=False)
# Make prediction
return _predict(network=network, dataset=dataset, ecg_names=ecg_names, two_classes=is_binary_classifier,
return_probability=return_probability, device=device)
def _train(network: nn.Module, two_classes: bool) -> nn.Module:
"""
Private function which trains the given model
:param network: (nn.Module) Model to be trained
:param two_classes: (bool) If true only two classes are utilized
:return: (nn.Module) Trained model
"""
# Init data logger
data_logger = Logger(experiment_path_extension="ECGCNN_XL_predict_training")
# Init optimizer
optimizer = torch_optimizer.RAdam(params=network.parameters(), lr=1e-03)
# Init learning rate schedule
learning_rate_schedule = torch.optim.lr_scheduler.MultiStepLR(
optimizer=optimizer, milestones=[1 * 100 // 4, 2 * 100 // 4, 3 * 100 // 4], gamma=0.1)
# Init datasets
if two_classes:
training_split = TRAINING_SPLIT_CHALLANGE_2_CLASSES
validation_split = VALIDATION_SPLIT_CHALLANGE_2_CLASSES
else:
training_split = TRAINING_SPLIT_CHALLANGE
validation_split = VALIDATION_SPLIT_CHALLANGE
# Load data
try:
ecg_leads, ecg_labels, fs, ecg_names = load_references("data/training2017/")
except RuntimeError as exception:
print("Download the PhysioNet training data or change path. Link is in the repo. Full PhysioNet is used!")
exit(1904)
training_dataset = DataLoader(
PhysioNetDataset(ecg_leads=[ecg_leads[index] for index in training_split],
ecg_labels=[ecg_labels[index] for index in training_split], fs=fs,
augmentation_pipeline=AugmentationPipeline(
AUGMENTATION_PIPELINE_CONFIG if not two_classes else AUGMENTATION_PIPELINE_CONFIG_2C),
two_classes=two_classes),
batch_size=24, num_workers=20, pin_memory=True, drop_last=False, shuffle=True)
validation_dataset = DataLoader(
PhysioNetDataset(ecg_leads=[ecg_leads[index] for index in validation_split],
ecg_labels=[ecg_labels[index] for index in validation_split], fs=fs,
augmentation_pipeline=None,
two_classes=two_classes),
batch_size=24, num_workers=20, pin_memory=True, drop_last=False, shuffle=False)
# Init model wrapper
model_wrapper = ModelWrapper(network=network,
optimizer=optimizer,
loss_function=SoftmaxCrossEntropyLoss(
weight=(1., 1) if two_classes else (0.4, 0.7, 0.9, 0.9)),
training_dataset=training_dataset,
validation_dataset=validation_dataset,
data_logger=data_logger,
learning_rate_schedule=learning_rate_schedule,
device="cuda")
# Perform training
model_wrapper.train(epochs=100)
# Load best model
network.load_state_dict(torch.load(model_wrapper.data_logger.path_models + "/best_model.pt"))
return network
@torch.no_grad()
def _predict(network: nn.Module, dataset: DataLoader, ecg_names: List[str],
two_classes: bool, return_probability: bool,
device: Union[str, torch.device] = "cpu") -> Union[List[Tuple[str, str]], List[Tuple[str, str, float]],
List[Tuple[str, str, Dict[str, float]]]]:
"""
Private function to make predictions
:param network: (nn.Module) Trained model
:param dataset: (DataLoader) Dataset to be predicted
:param ecg_names: (List[str]) Name of each sample
:param two_classes: (bool) If true only two classes are utilized
:param return_probability: (bool) If true P(AF) is also returned as part of the result tuple (only for binary case)
:param device: (Union[str, torch.device]) Device to be utilized
:return: (Union[List[Tuple[str, str]], List[Tuple[str, str, float]]]) List of tuples including name, prediction and
probability P(AF) if utilized
"""
# Init list to store predictions
predictions: Union[List[Tuple[str, str]], List[Tuple[str, str, float]], List[Tuple[str, Dict[str, float]]]] = []
# Network to device
network.to(device)
# Network into eval mode
network.eval()
# Init progress bar
progress_bar = tqdm(total=len(dataset))
# Prediction loop
for name, data in zip(ecg_names, dataset):
# Update progress bar
progress_bar.update(n=1)
# Unpack data
ecg_lead, spectrogram, _ = data
# Data to cuda
ecg_lead = ecg_lead.to(device)
spectrogram = spectrogram.to(device)
# Make prediction
prediction: torch.Tensor = network(ecg_lead, spectrogram)
# Threshold prediction
prediction_argmax = prediction.argmax(dim=-1)
# Construct prediction
if return_probability:
if two_classes:
predictions.append((name, _get_prediction_name(prediction=prediction_argmax, two_classes=two_classes),
prediction[..., -1].item()))
else:
predictions.append((name, _get_prediction_name(prediction=prediction_argmax, two_classes=two_classes), dict(zip(["N", "O", "A", "~"], prediction.reshape(-1).tolist()))))
else:
predictions.append((name, _get_prediction_name(prediction=prediction_argmax, two_classes=two_classes)))
# Close progress bar
progress_bar.close()
return predictions
def _get_prediction_name(prediction: torch.Tensor, two_classes: bool) -> str:
"""
Function produces string prediction from raw class prediction
:param prediction: (torch.Tensor) Prediction of the shape [batch size = 1]
:param two_classes: (bool) If true two class case is utilized
:return: (str) String including the class name
"""
# Check batch size
assert prediction.shape[0] == 1, "Only a batch size of one is supported."
# Two class case
if two_classes:
if int(prediction.item()) == 0:
return "N"
elif int(prediction.item()) == 1:
return "A"
else:
raise RuntimeError("Wrong prediction encountered")
# Four class case
if int(prediction.item()) == 0:
return "N"
elif int(prediction.item()) == 1:
return "O"
elif int(prediction.item()) == 2:
return "A"
elif int(prediction.item()) == 3:
return "~"
else:
raise RuntimeError("Wrong prediction encountered")