diff --git a/2025/2025.md b/2025/2025.md index 174e56c..e1fddcc 100644 --- a/2025/2025.md +++ b/2025/2025.md @@ -19,8 +19,7 @@ - [Khesin, 2025, Quantum Computing from Graphs](https://arxiv.org/pdf/2501.17959) - [Kemples et al., 2025, Double descent in quantum machine learning](https://arxiv.org/pdf/2501.10077) - [Lall et al., 2025, A Review and Collection of Metrics and Benchmarks for Quantum Computers: definitions, methodologies and software](https://arxiv.org/pdf/2502.06717) -- [Lee & Cho & Kim, 2025, Q-MAML: Quantum Model-Agnostic Meta-Learning for Variational Quantum -Algorithms](https://arxiv.org/pdf/2501.05906) +- [Lee & Cho & Kim, 2025, Q-MAML: Quantum Model-Agnostic Meta-Learning for Variational Quantum Algorithms](https://arxiv.org/pdf/2501.05906) - [Li, et al., 2025, Quantum Machine Learning of Molecular Energies with Hybrid Quantum-Neural Wavefunction](https://arxiv.org/pdf/2501.04264) - [Lipardi et al., 2025, Quantum Circuit Design using a Progressive Widening Enhanced Monte Carlo Tree Search](https://arxiv.org/pdf/2502.03962) - [Liu et al., 2025, Quantum learning advantage on a scalable photonic platform](https://arxiv.org/pdf/2502.07770) @@ -33,6 +32,7 @@ Algorithms](https://arxiv.org/pdf/2501.05906) - [Nakada & Tanahashi & Tanaka, 2025, Inductive Construction of Variational Quantum Circuit for Constrained Combinatorial Optimization](https://arxiv.org/pdf/2501.03521) - [Nghiem, 2025, New Quantum Algorithm for Principal Component Analysis](https://arxiv.org/pdf/2501.07891) - [Osaba et al., 2025, Solving Drone Routing Problems with Quantum Computing: A Hybrid Approach Combining Quantum Annealing and Gate-Based Paradigms](https://arxiv.org/pdf/2501.18432) +- [Pastori et al., 2025, Quantum Neural Networks for Cloud Cover Parameterizations in Climate Models](https://arxiv.org/pdf/2502.10131) - [Patel et al., 2025, Quantum Measurement for Quantum Chemistry on a Quantum Computer](https://arxiv.org/pdf/2501.14968) - [Rosaler et al., 2025, Supervised Similarity for High-Yield Corporate Bonds with Quantum Cognition Machine Learning](https://arxiv.org/pdf/2502.01495) - [Schetakis et al., 2025, Data re-uploading in Quantum Machine Learning for time series: application to traffic forecasting](https://arxiv.org/pdf/2501.12776)