diff --git a/2024/2024.md b/2024/2024.md index 9b77703..cea51aa 100644 --- a/2024/2024.md +++ b/2024/2024.md @@ -9,6 +9,9 @@ - [Aktar et al., 2024, Graph Neural Networks for Parameterized Quantum Circuits Expressibility Estimation](https://arxiv.org/pdf/2405.08100) - [Ali & Kabel, 2024, Piecewise Polynomial Tensor Network Quantum Feature Encoding](https://arxiv.org/pdf/2402.07671) - [Aminpour & Sharif, 2024, Strategic Data Re-Uploads: A Pathway to Improved Quantum Classification Data Re-Uploading Strategies for Improved Quantum Classifier Performance](https://arxiv.org/pdf/2405.09377) +- [An et al., 2024, Dual-Capability Machine Learning Models for Quantum Hamiltonian Parameter Estimation and Dynamics Prediction](https://arxiv.org/pdf/2405.13582) +- [Arjona-Medina & Nugmanov, 2024, Analysis of Atom-level pretraining with QM data for Graph Neural Networks Molecular property models](https://arxiv.org/pdf/2405.14837) +- [Bakó et al., 2024, Problem-informed Graphical Quantum Generative Learning](https://arxiv.org/pdf/2405.14072) - [Bangar et al., 2024, Continuous-variable Quantum Boltzmann Machine](https://arxiv.org/pdf/2405.06580) - [Barthe et al., 2024, Expressivity of parameterized quantum circuits for generative modeling of continuous multivariate distributions](https://arxiv.org/pdf/2402.09848) - [Battaglia et al., 2024, A general framework for active space embedding methods: applications in quantum computing](https://arxiv.org/pdf/2404.18737) @@ -24,6 +27,7 @@ - [Calderón et al., 2024, Measurement-based quantum machine learning](https://arxiv.org/pdf/2405.08319) - [Cantori & Pilati, 2024, Challenges and opportunities in the supervised learning of quantum circuit outputs](https://arxiv.org/pdf/2402.04992) - [Cara et al., 2024, Quantum Vision Transformers for Quark-Gluon Classification](https://arxiv.org/pdf/2405.10284) +- [Cemin et al., 2024, Machine learning of quantum channels on NISQ devices](https://arxiv.org/pdf/2405.12598) - [Chakraborty et al., 2024, A Machine Learning Approach for Optimizing Hybrid Quantum Noise Clusters for Gaussian Quantum Channel Capacity](https://arxiv.org/pdf/2404.08993) - [Chen et al., 2024, Crossing The Gap Using Variational Quantum Eigensolver: A Comparative Study](https://arxiv.org/pdf/2405.11687) - [Chia & Liang & Song, 2024, Quantum State Learning Implies Circuit Lower Bounds](https://arxiv.org/pdf/2405.10242) @@ -46,8 +50,10 @@ - [Georgiou & Jose & Simeone, 2024, Adversarial Quantum Machine Learning: An Information-Theoretic Generalization Analysis](https://browse.arxiv.org/pdf/2402.00176) - [Gerlach & Mücke, 2024, Investigating the Relation Between Problem Hardness and QUBO Properties](https://arxiv.org/pdf/2404.02751) - [Goldschmith & Mahmud, 2024, Machine Learning for Quantum Computing Specialists](https://arxiv.org/pdf/2404.18555) +- [Gonzales et al., 2024, Detecting Errors in a Quantum Network with Pauli Checks](https://arxiv.org/pdf/2405.15236) - [Gustafson et al., 2024, Surrogate optimization of variational quantum circuits](https://arxiv.org/pdf/2404.02951) - [He, 2024, Quantum Annealing and Graph Neural Networks for Solving TSP with QUB0](https://arxiv.org/pdf/2402.14036) +- [Hegde et al., 2024, Beyond the Buzz: Strategic Paths for Enabling Useful NISQ Applications](https://arxiv.org/pdf/2405.14561) - [Herbst & De Maio & Brandi, 2024, On Optimizing Hyperparameters for Quantum Neural Networks](https://arxiv.org/pdf/2403.18579) - [Higushi & Segawa, 2024, Quantum walks on graphs embedded in orientable surfaces](https://browse.arxiv.org/pdf/2402.00360) - [Hryniuk & Szymańska, 2024, Tensor-network-based variational Monte Carlo approach to the non-equilibrium steady state of open quantum systems](https://arxiv.org/pdf/2405.12044) @@ -65,6 +71,7 @@ - [King, et al., 2024, Computational supremacy in quantum simulation](https://arxiv.org/pdf/2403.00910.pdf) - [Kiwit et al., 2024, Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK](https://arxiv.org/pdf/2403.18662) - [Krovi, 2024, Quantum algorithms to simulate quadratic classical Hamiltonians and optimal control](https://arxiv.org/pdf/2404.07303.pdf) +- [Kukliansky et al., 2024, Leveraging Quantum Machine Learning Generalization to Significantly Speed-up Quantum Compilation](https://arxiv.org/pdf/2405.12866) - [Kundu, 2024, Reinforcement learning-assisted quantum architecture search for variational quantum algorithms](https://arxiv.org/pdf/2402.13754) - [Kundu et al., 2024, Application of Quantum Tensor Networks for Protein Classification](https://arxiv.org/pdf/2403.06890) - [Larson & Menickelly & Shi, 2024, A Novel Noise-Aware Classical Optimizer for Variational Quantum Algorithms](https://arxiv.org/pdf/2401.10121) @@ -94,7 +101,9 @@ - [de Oliveira et al., 2024, Demonstration of weighted graph optimization on a Rydberg atom array using local light-shifts](https://arxiv.org/pdf/2404.02658) - [Okumura & Ohzeki & Abe, 2024, Application of time-series quantum generative model to financial data](https://arxiv.org/pdf/2405.11795) - [Olsacher et al., 2024, Hamiltonian and Liouvillian learning in weakly-dissipative quantum many-body systems](https://arxiv.org/pdf/2405.06768) +- [Oshio et al., 2024, Adaptive measurement strategy for noisy quantum amplitude estimation with variational quantum circuits](https://arxiv.org/pdf/2405.15174) - [Ott et al., 2024, Hamiltonian Learning in Quantum Field Theories](https://arxiv.org/pdf/2401.01308) +- [Pal & Pal, 2024, Time-dependent Hamiltonians and Geometry of Operators Generated by Them](https://arxiv.org/pdf/2405.14410) - [Perlin et al., 2024, Q-CHOP: Quantum constrained Hamiltonian optimization](https://arxiv.org/pdf/2403.05653) - [Power & Guha, 2024, Feature Importance and Explainability in Quantum Machine Learning](https://arxiv.org/pdf/2405.08917) - [Razavinia & Haghighatdoost, 2024, A route to quantum computing through the theory of quantum graphs](https://arxiv.org/pdf/2404.13773) @@ -105,7 +114,9 @@ - [Ruiz et al., 2024, Quantum Circuit Optimization with AlphaTensor](https://arxiv.org/pdf/2402.14396) - [Sadhu & Sarkar & Kundu, 2024, A quantum information theoretic analysis of reinforcement learning-assisted quantum architecture search](https://arxiv.org/pdf/2404.06174) - [Sahin et al., 2024, Efficient Parameter Optimisation for Quantum Kernel Alignment: A Sub-sampling Approach in Variational Training](https://arxiv.org/pdf/2401.02879) +- [Sakurai et al., 2024, Simple Hamiltonian dynamics is a powerful quantum processing resource](https://arxiv.org/pdf/2405.14245) - [Sanavio et al., 2024, Quantum Circuit for Imputation of Missing Data](https://arxiv.org/pdf/2405.04367) +- [Sarkar, Chakraborty, Adhikari, 2024, Quantum circuit model for Hamiltonian simulation via Trotter decomposition](https://arxiv.org/pdf/2405.13605) - [Schillo & Sturm, 2024, Quantum Circuit Learning on NISQ Hardware](https://arxiv.org/pdf/2405.02069) - [Schnaus et al., 2024, Efficient Encodings of the Travelling Salesperson Problem for Variational Quantum Algorithms](https://arxiv.org/pdf/2404.05448) - [Scholten et al., 2024, Assessing the Benefits and Risks of Quantum Computers](https://browse.arxiv.org/pdf/2401.16317) @@ -121,15 +132,18 @@ - [Situ et al., 2024, Distributed quantum architecture search](https://arxiv.org/pdf/2403.06214) - [Smith & Sukhtayev, 2024 Splitting Quantum Graphs](https://arxiv.org/pdf/2402.07409) - [Song, 2024, Quantum walk on simplicial complexes for simplicial community detection](https://arxiv.org/pdf/2401.00699) +- [Souza & Oliveira, 2024, Layers of planar hexagonal heterostructure modeled by quantum graphs](https://arxiv.org/pdf/2405.15029) - [Stechly, 2024, Introduction to Variational Quantum Algorithms](https://arxiv.org/pdf/2402.15879) - [Sturm & Mummaneni & Rullkötter, 2024, Unlocking Quantum Optimization: A Use Case Study on NISQ Systems](https://arxiv.org/pdf/2404.07171) - [Sun et al., 2024, Quantum Architecture Search with Unsupervised Representation Learning](https://arxiv.org/pdf/2401.11576) - [Suppakitpaisarn & Hao, 2024, Utilizing Graph Sparsification for Pre-processing in Maxcut QUBO Solver](https://arxiv.org/pdf/2401.13004) - [Suzuki & Sakuma & Kawaguchi, 2024, Light-cone feature selection for quantum machine learning](https://arxiv.org/pdf/2403.18733) - [Tucker et al., 2024, Hamiltonian Learning using Machine Learning Models Trained with Continuous Measurements](https://arxiv.org/pdf/2404.05526) +- [Tucker et al., 2024, Quantum-assisted Rendezvous on Graphs: Explicit Algorithms and Quantum Computer Simulations](https://arxiv.org/pdf/2405.14951) - [Umeano & Elfving & Kyriienko, 2024, Geometric quantum machine learning of BQPA protocols and latent graph classifiers](https://arxiv.org/pdf/2402.03871) - [Umeano & Kyriienko, 2024, Ground state-based quantum feature maps](https://arxiv.org/pdf/2404.07174) - [van der Poel & Zhao, 2024, Entangling Machine Learning with Quantum Tensor Networks](https://arxiv.org/pdf/2403.12969) +- [Venkatesh et al., 2024, Qubit-efficient Variational Quantum Algorithms for Image Segmentation](https://arxiv.org/pdf/2405.14405) - [Vinkhuijzen & Coopmans & Laarman, 2024, A Knowledge Compilation Map for Quantum Information](https://arxiv.org/pdf/2401.01322) - [Wang & Liu, 2024, Quantum Machine Learning: from NISQ to Fault Tolerance](https://arxiv.org/pdf/2401.11351) - [Wang & Wang, 2024, Time series prediction of open quantum system dynamics](https://arxiv.org/pdf/2401.06380) @@ -142,6 +156,7 @@ - [Wolf, 2024, Why we care (about quantum machine learning)](https://arxiv.org/pdf/2401.07547) - [Wu et al., 2024, Python-Based Quantum Chemistry Calculations with GPU Acceleration](https://arxiv.org/pdf/2404.09452) - [Yamamoto & Yoshioka, 2024, Robust Angle Finding for Generalized Quantum Signal Processing](https://arxiv.org/pdf/2402.03016) +- [Yang et al., 2024, Quantum Resonant Dimensionality Reduction and Its Application in Quantum Machine Learning](https://arxiv.org/pdf/2405.12625) - [Ye, 2024, QAOA on Hamiltonian Cycle problem](https://arxiv.org/pdf/2401.00017) - [Yogendran et al., 2024, Big data applications on small quantum computers](https://arxiv.org/pdf/2402.01529) - [Zaman et al., 2024, A Comparative Analysis of Hybrid-Quantum Classical Neural Networks](https://arxiv.org/pdf/2402.10540)