-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathwriteES.py
168 lines (121 loc) · 4.49 KB
/
writeES.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#!/usr/bin/env python
import requests
import time
import datetime
from elasticsearch import Elasticsearch
import numpy
#import thread
import threading
import random
import string
import json
import yaml
working_threads = 8
hits_per_thread = 5000
host_es = "192.168.5.235"
index_name = "test_data"
batch_size = 500
with open('bench-configuration.yml', 'r') as f:
doc = yaml.load(f)
working_threads = doc["write_module"]["number_of_threads"]
hits_per_thread = doc["write_module"]["hits_per_thread"]
division= doc["write_module"]["division_report"]
report_time = hits_per_thread/division
host_es = doc["general"]["es_host"]
index_name = doc["general"]["index"]
batch_size = doc["write_module"]["batch_size"]
timeout_value = doc["write_module"]["timeout"]
# This function hits with "hits_per_thread" the system
def hit_es( threadNum, times):
time_outs = 0
#connect to our cluster
es = Elasticsearch([{'host': host_es, 'port': 9200}])
upload_data_txt = ""
upload_data_count = 0
with open("./finalLogsDataSet") as f:
artLogs = f.readlines()
for i in range(hits_per_thread):
if i%100000==0:
print "On the Way! " + str(i)
item = random.choice(artLogs)
cmd = {'index': {'_index': index_name,
'_type': 'nova9'}}
upload_data_txt += json.dumps(cmd) + "\n"
upload_data_txt += item
upload_data_count += 1
# print upload_data_txt
if upload_data_count == batch_size:
start_time = time.time()
while True:
try:
res = es.bulk(index = index_name, body = upload_data_txt, refresh = False, timeout= timeout_value)
except:
print "Connection time-out occured. Consider a bigger time-out limit"
time_outs = time_outs + 1
continue
break
res_txt = "OK" if not res['errors'] else "FAILED"
#print (res_txt)
finish_time = (time.time() - start_time)
#print finish_time
real_time = res['took']
#print (real_time)
upload_data_txt = ""
upload_data_count = 0
times.append(real_time)
#print result['hits']['total']
print ("Thread " + str(threadNum) + " finished... \n\n\n")
print " Total time-outs: " + str(time_outs)
class myThread (threading.Thread):
def __init__(self, threadID, name, timeList):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.timeList = timeList
def run(self):
print ("Starting " + self.name)
hit_es(self.threadID, self.timeList)
print ("Exiting " + self.name)
times = []
threads = []
overall_start_time = time.time()
# Create and start the threads
for thread_id in range(working_threads):
# Create threads as follows
print ("Creating thread " + str(thread_id) + "..." )
# Create new thread
newThread = myThread(thread_id, "Thread-"+str(thread_id), times)
# Start new Thread
newThread.start()
# Add thread to thread list
threads.append(newThread)
# Wait for all threads to complete
for t in threads:
t.join()
print ("Exiting Main Thread...")
print ("My list has length: " + str(len(times)) )
# Calculate statistics
overall_time = time.time() - overall_start_time
no_queries = hits_per_thread * working_threads
throughPut = no_queries/overall_time
print ("Overall time: " + str(overall_time))
print ("ThroughPut : " + str(no_queries/overall_time) + "(servedQueries/sec)")
print ("\n\nFinished with querries with the below statistics:")
avg_time = numpy.mean(times)
#put_settings(*args, **kwargs)
es = Elasticsearch([{'host': host_es, 'port': 9200, }])
health = es.cluster.health(index=index_name)
data_nodes = health['number_of_data_nodes']
active_primary_shards = health['active_primary_shards']
avg_per_doc = avg_time/batch_size
print ("Average time per bulk: " + str(avg_time) + " ms")
print ("Average per doc: " + str(avg_per_doc) + " ms" )
print ("Cluster:" + health['cluster_name'])
print ("Status:" + health['status'])
print ("Number of data nodes:" + str(data_nodes))
print ("Number of active_primary_shards:" + str(active_primary_shards))
line_to_write = str(data_nodes) + " " + str(avg_time)
# write the results into the final file so as to plot them.
with open("write_stats.txt", "a") as text_file:
text_file.write(line_to_write)
text_file.write("\n")