-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
285 lines (236 loc) · 9.2 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
from flask import Flask,jsonify,request
import pandas as pd
import numpy as np
import time
from sklearn.model_selection import train_test_split
import sys
import turicreate as tc
sys.path.append("..")
import json
from flask_cors import CORS
from flask import request
import datetime
import json as json
from pymongo import MongoClient
from sklearn.svm import SVR
import matplotlib.pyplot as plt
from scipy import stats
from sklearn.ensemble import RandomForestRegressor
from bson import ObjectId
import math
# from flask_ngrok import run_with_ngrok
app=Flask(__name__)
CORS(app)
# run_with_ngrok(app)
url='mongodb+srv://test:[email protected]/test?retryWrites=true&w=majority'
db_name='shop_list'
def read_json(url,db_name,table_name):
client = MongoClient(url)
db = client.get_database(db_name)
if(table_name=="customers"):
return(db.customers)
elif(table_name=="transactions"):
return(db.transactions)
elif(table_name=="itemlist"):
return(db.itemlist)
elif(table_name=="category"):
return(db.category)
elif(table_name=="rta"):
return(db.rta)
elif(table_name=="Recent_purchases"):
return(db.Recent_purchases)
#functions for recommendation -->>
#To get the overall users list
def get_user():
users_table=read_json(url,db_name,"customers")
res=users_table.find({},{"_id":0})
users=[]
for i in res:
users.append(str(i["cust_id"]))
return users
#To get the the data for recommendation
def get_data(users):
user_data=[]#output 1
item_data=[]#output 2
target_data=[]#output 3
transactions_table=read_json(url,db_name,"transactions")
for user in users:
#An object to find in the table
query={}
query["cust_id"]=int(user)
res=transactions_table.find(query,{"_id":0,"cust_id":0})#ignoring the _id and cust_id fields
for obj in res:
for enteries in obj["Transaction"]:
user_data.append(str(user))
item_data.append(str(enteries["item_id"]))
target_data.append(len(enteries["item_transactions"]))
return user_data,item_data,target_data
#Functions for prediction algorithms -->>
def calc_error(predicted,actual):
error=0
for i in range(0,len(actual)):
error=error+((actual[i]-predicted[i])*(actual[i]-predicted[i]))
error=error/len(actual)
return math.sqrt(error)
#Prefetches the dates and quantity with corresponding to item_id in recent purchases
def prefetch(item_id_dict,item_info):
for x in item_info:
for y in x["Transaction"]:
if(item_id_dict.get(y['item_id'])!=None):
dates=[]
quantity=[]
item_trans = y['item_transactions']
for z in item_trans:
dates.append(z['date'])
quantity.append(z['quantity'])
item_id_dict[y['item_id']]["dates"]=dates
item_id_dict[y['item_id']]["quantity"]=quantity
return item_id_dict
def removeOutliers(frequency,threshold):
modified_freq=[]
modified_quantity=[]
for freq,arr in frequency.items():
if(len(arr)==1):
modified_freq.append(freq)
modified_quantity.append(arr[0])
else:
z=stats.zscore(arr)
for idx in range(0,len(z)):
if(np.isnan(z[idx])==True):
modified_freq.append(freq)
modified_quantity.append(arr[idx])
elif(abs(z[idx])<threshold):
modified_freq.append(freq)
modified_quantity.append(arr[idx])
return modified_freq,modified_quantity
def get_dates_quantity(dates,quantity,remove_outliers=0,outliers_threshold=0):
dates_arr=[]
frequency_distribution={}
for i in range(1,len(dates)):
frequency=(dates[i]-dates[i-1]).astype('int64')
dates_arr.append(frequency)
frequency_distribution[frequency]=[]
quantity=quantity[1:]
if(remove_outliers==1):
for idx in range(0,len(dates_arr)):
frequency_distribution[dates_arr[idx]].append(quantity[idx])
modified_dates,modified_quantity=removeOutliers(frequency_distribution,outliers_threshold)
modified_dates=np.array(modified_dates).astype('int64')
modified_dates=np.reshape(modified_dates,(len(modified_dates),1))
return modified_dates,modified_quantity
else:
dates_arr=np.array(dates_arr).astype('int64')
dates_arr=np.reshape(dates_arr,(len(dates_arr),1))
return (dates_arr,quantity)
def algo(dates,quantity,gap):
dates = np.array(dates).astype('datetime64[D]')
#preparing frequncy array(dates_arr)
(dates_arr , quantity) = get_dates_quantity(dates,quantity,0,1.5)
#INITIALISING THE MODEL
svr_rbf=SVR(kernel='rbf',C=1e3,gamma=0.1)
random_forest = RandomForestRegressor(n_estimators=5,random_state=10)
#FITTING THE MODEL
#svr_poly.fit(dates_arr,quantity)-- CURRENTLY NOT USING POLY
svr_rbf.fit(dates_arr,quantity)
random_forest.fit(dates_arr,quantity);
#READING THE CURRENT TIMESTAMP TO FIND THE GAP
predict_dates = gap
predict_dates = np.reshape(predict_dates,(1,1))
#PREDICTING FROM THE FITTED MODEL
if predict_dates > max(dates_arr):
maximum = max(dates_arr)[0]
k = 0
max_quant = 0
for i in dates_arr:
if (i[0] == maximum):
if (quantity[k] > max_quant):
max_quant = quantity[k]
k += 1
return(round(max_quant))
rbf= svr_rbf.predict(dates_arr)
rf=random_forest.predict(dates_arr)#rf=Random Forest
rounded_rbf=[]
rounded_rf=[]
for i in range(0,len(rbf)):
rounded_rbf.append(round(rbf[i]))
rounded_rf.append(round(rf[i]))
error_rbf=calc_error(rounded_rbf,quantity)
error_rf=calc_error(rounded_rf,quantity)
#print(error_rbf,error_rf) -->> ERROR PRINTING
if(error_rbf<=error_rf):
return svr_rbf.predict(predict_dates)[0]
else:
return random_forest.predict(predict_dates)[0]
@app.route('/ml/recommend',methods=['GET'])
#Main function for recommendation
def recommend():
user_id = request.args.get('userid')
users=get_user()
#users=[25]
user_data,item_data,target_data=get_data(users)
user_arr=[]
user_arr.append(str(user_id))
sf = tc.SFrame({'user_id':user_data,'item_id':item_data,'frequency':target_data})
m = tc.item_similarity_recommender.create(sf,target="frequency",similarity_type='cosine')
#recom=m.recommend(users,k=10) UNCOMMENT IF want to test for all users
recom=m.recommend(user_arr,k=10)
output={}
output["item_id"]=[]
for items in recom["item_id"]:
output["item_id"].append(items)
return json.dumps(output)
@app.route('/ml/predict',methods=['GET'])
def predict():
userid = request.args.get('userid')
transaction =read_json(url,db_name,"transactions")
recent_purchases = read_json(url,db_name,"Recent_purchases")#Getting the rta table
# itemlist = db.itemlist
user_dict={}
user_dict["cust_id"]=int(userid)
item_info = transaction.find(user_dict,{"Transaction.item_transactions.date":1, "Transaction.item_transactions.quantity":1,"Transaction.item_id":1,"_id":0})
itemDetails = recent_purchases.find(user_dict,{'_id':0})#Mongo query
output = []
item_id_dict={}#Stores the item and dates and quantity array
item_info_dict=[] #stores the avg , last_date and item_id
for item in itemDetails:
for one_item in item['recents']:
item_obj_dict={}
item_id_dict[one_item["item_id"]]={}
item_obj_dict["item_id"]=one_item["item_id"]
item_obj_dict["avg"]=one_item["avg"]
item_obj_dict["last_date"]=one_item["last_date"]
item_info_dict.append(item_obj_dict)
item_id_dict=prefetch(item_id_dict,item_info)
for one_item in item_info_dict:
avg = one_item['avg'] #Fetch the avg of an item for a particular user
datetimeobj = datetime.datetime.now()
date = datetimeobj.strftime("%Y") + "-" +datetimeobj.strftime("%m") + "-" + datetimeobj.strftime("%d")
last_date_of_purchase=one_item['last_date']
t = (datetime.datetime.strptime(date,"%Y-%m-%d") - datetime.datetime.strptime(last_date_of_purchase,"%Y-%m-%d"))
t = t.days
avg=math.ceil(avg)
if(avg !=0 and ((avg)-2)<=t and t<=(avg+3)):
item_pred = {}
itemid = one_item['item_id']
item_dict=item_id_dict.get(itemid)
if(len(item_dict["dates"])>2 and len(item_dict["quantity"])>2):
ans = algo(dates=item_dict["dates"],quantity=item_dict["quantity"],gap=t)
dictionary = dict({'item_id' : itemid})
# itemName = itemlist.find( dictionary, {'item_name':1 ,'item_id':1, '_id':0})
item_pred['itemID'] = itemid
# for name in itemName['item_name']:
item_pred['itemName'] = "Test_items"
item_pred['Quantity'] = round(ans)
output.append(item_pred)
# else:
# print("Hello")
# customer_dict={}
# customer_dict["cust_id"]=user
# info_dict={}
# info_dict["recent.item_id"]=one_item["item_id"]
# recent_transactions.update(customer_dict,{'$pull':info_dict})
json_output=json.dumps(output)
return json_output
if __name__=='__main__':
app.run(debug=True)
app.run()