diff --git a/doc/HandWrittenNotes/2024/NotesJanuary26.pdf b/doc/HandWrittenNotes/2024/NotesJanuary26.pdf new file mode 100644 index 00000000..637a026a Binary files /dev/null and b/doc/HandWrittenNotes/2024/NotesJanuary26.pdf differ diff --git a/doc/pub/week2/ipynb/Results/FigureFiles/QdotMetropolis.png b/doc/pub/week2/ipynb/Results/FigureFiles/QdotMetropolis.png index 771e93ca..3b50b24f 100644 Binary files a/doc/pub/week2/ipynb/Results/FigureFiles/QdotMetropolis.png and b/doc/pub/week2/ipynb/Results/FigureFiles/QdotMetropolis.png differ diff --git a/doc/pub/week2/ipynb/Results/FigureFiles/VMCHarmonic.png b/doc/pub/week2/ipynb/Results/FigureFiles/VMCHarmonic.png index 193731cf..fef8f901 100644 Binary files a/doc/pub/week2/ipynb/Results/FigureFiles/VMCHarmonic.png and b/doc/pub/week2/ipynb/Results/FigureFiles/VMCHarmonic.png differ diff --git a/doc/pub/week2/ipynb/Results/VMCHarmonic/VMCHarmonic.dat b/doc/pub/week2/ipynb/Results/VMCHarmonic/VMCHarmonic.dat index 73c797c0..22706f5e 100644 --- a/doc/pub/week2/ipynb/Results/VMCHarmonic/VMCHarmonic.dat +++ b/doc/pub/week2/ipynb/Results/VMCHarmonic/VMCHarmonic.dat @@ -1,20 +1,20 @@ -0.450000 1.282801 2.736479 0.001654 -0.500000 1.070395 1.790885 0.001338 -0.550000 0.896756 1.136259 0.001066 -0.600000 0.795474 0.759713 0.000872 -0.650000 0.708003 0.492106 0.000702 -0.700000 0.626093 0.289718 0.000538 -0.750000 0.585422 0.188462 0.000434 -0.800000 0.549600 0.105289 0.000324 -0.850000 0.526104 0.054113 0.000233 -0.900000 0.511764 0.022914 0.000151 -0.950000 0.502559 0.005346 0.000073 +0.450000 1.180614 2.365134 0.004863 +0.500000 1.102708 1.897733 0.004356 +0.550000 0.894354 1.098958 0.003315 +0.600000 0.803621 0.810480 0.002847 +0.650000 0.704845 0.474894 0.002179 +0.700000 0.641836 0.314429 0.001773 +0.750000 0.588947 0.195473 0.001398 +0.800000 0.554685 0.108195 0.001040 +0.850000 0.529034 0.056878 0.000754 +0.900000 0.509911 0.022084 0.000470 +0.950000 0.503576 0.005542 0.000235 1.000000 0.500000 0.000000 0.000000 -1.050000 0.502264 0.004824 0.000069 -1.100000 0.507897 0.018838 0.000137 -1.150000 0.519439 0.040009 0.000200 -1.200000 0.533679 0.069712 0.000264 -1.250000 0.550477 0.104797 0.000324 -1.300000 0.569137 0.152385 0.000390 -1.350000 0.593459 0.202036 0.000449 -1.400000 0.617045 0.263452 0.000513 +1.050000 0.502961 0.004645 0.000216 +1.100000 0.510123 0.017847 0.000422 +1.150000 0.519669 0.040372 0.000635 +1.200000 0.536026 0.070729 0.000841 +1.250000 0.548244 0.107160 0.001035 +1.300000 0.572471 0.158318 0.001258 +1.350000 0.601695 0.195857 0.001399 +1.400000 0.622979 0.258030 0.001606 diff --git a/doc/pub/week2/ipynb/Results/VMCQdotMetropolis/VMCQdotMetropolis.dat b/doc/pub/week2/ipynb/Results/VMCQdotMetropolis/VMCQdotMetropolis.dat index 39b6b233..5889caf8 100644 --- a/doc/pub/week2/ipynb/Results/VMCQdotMetropolis/VMCQdotMetropolis.dat +++ b/doc/pub/week2/ipynb/Results/VMCQdotMetropolis/VMCQdotMetropolis.dat @@ -1,100 +1,100 @@ -0.925000 0.210000 3.058097 0.105978 0.000326 -0.925000 0.220000 3.052278 0.097440 0.000312 -0.925000 0.230000 3.046877 0.087795 0.000296 -0.925000 0.240000 3.044738 0.078956 0.000281 -0.925000 0.250000 3.038550 0.071594 0.000268 -0.925000 0.260000 3.034932 0.063791 0.000253 -0.925000 0.270000 3.031160 0.057386 0.000240 -0.925000 0.280000 3.028016 0.051525 0.000227 -0.925000 0.290000 3.024914 0.046224 0.000215 -0.925000 0.300000 3.021712 0.041399 0.000203 -0.950000 0.210000 3.047195 0.085256 0.000292 -0.950000 0.220000 3.041758 0.076677 0.000277 -0.950000 0.230000 3.036015 0.068651 0.000262 -0.950000 0.240000 3.032091 0.061108 0.000247 -0.950000 0.250000 3.028652 0.053903 0.000232 -0.950000 0.260000 3.025396 0.048170 0.000219 -0.950000 0.270000 3.020230 0.042311 0.000206 -0.950000 0.280000 3.020164 0.037303 0.000193 -0.950000 0.290000 3.016998 0.032503 0.000180 -0.950000 0.300000 3.014804 0.028263 0.000168 -0.975000 0.210000 3.035948 0.068976 0.000263 -0.975000 0.220000 3.031029 0.061214 0.000247 -0.975000 0.230000 3.026740 0.053339 0.000231 -0.975000 0.240000 3.024947 0.046741 0.000216 -0.975000 0.250000 3.019452 0.041329 0.000203 -0.975000 0.260000 3.017881 0.035878 0.000189 -0.975000 0.270000 3.014119 0.030955 0.000176 -0.975000 0.280000 3.011407 0.026870 0.000164 -0.975000 0.290000 3.011609 0.022713 0.000151 -0.975000 0.300000 3.008949 0.019390 0.000139 -1.000000 0.210000 3.026702 0.056188 0.000237 -1.000000 0.220000 3.023134 0.049286 0.000222 -1.000000 0.230000 3.019449 0.042802 0.000207 -1.000000 0.240000 3.016844 0.037026 0.000192 -1.000000 0.250000 3.012968 0.032259 0.000180 -1.000000 0.260000 3.011597 0.027690 0.000166 -1.000000 0.270000 3.009589 0.023437 0.000153 -1.000000 0.280000 3.007846 0.019928 0.000141 -1.000000 0.290000 3.006022 0.016764 0.000129 -1.000000 0.300000 3.004709 0.014038 0.000118 -1.025000 0.210000 3.021562 0.046879 0.000217 -1.025000 0.220000 3.018834 0.040732 0.000202 -1.025000 0.230000 3.014675 0.035475 0.000188 -1.025000 0.240000 3.012130 0.030561 0.000175 -1.025000 0.250000 3.009078 0.026514 0.000163 -1.025000 0.260000 3.008095 0.022404 0.000150 -1.025000 0.270000 3.006034 0.019265 0.000139 -1.025000 0.280000 3.004973 0.016376 0.000128 -1.025000 0.290000 3.003661 0.013840 0.000118 -1.025000 0.300000 3.002371 0.011805 0.000109 -1.050000 0.210000 3.017475 0.040525 0.000201 -1.050000 0.220000 3.013605 0.035818 0.000189 -1.050000 0.230000 3.011312 0.031379 0.000177 -1.050000 0.240000 3.008683 0.027419 0.000166 -1.050000 0.250000 3.007795 0.023609 0.000154 -1.050000 0.260000 3.006533 0.020513 0.000143 -1.050000 0.270000 3.004641 0.018040 0.000134 -1.050000 0.280000 3.003703 0.015884 0.000126 -1.050000 0.290000 3.002301 0.014023 0.000118 -1.050000 0.300000 3.002113 0.012461 0.000112 -1.075000 0.210000 3.012969 0.038371 0.000196 -1.075000 0.220000 3.011511 0.033417 0.000183 -1.075000 0.230000 3.009333 0.029983 0.000173 -1.075000 0.240000 3.007373 0.026754 0.000164 -1.075000 0.250000 3.005569 0.024331 0.000156 -1.075000 0.260000 3.005046 0.021772 0.000148 -1.075000 0.270000 3.005110 0.019633 0.000140 -1.075000 0.280000 3.002882 0.018343 0.000135 -1.075000 0.290000 3.003204 0.016920 0.000130 -1.075000 0.300000 3.003436 0.015913 0.000126 -1.100000 0.210000 3.012502 0.037863 0.000195 -1.100000 0.220000 3.010387 0.034619 0.000186 -1.100000 0.230000 3.008970 0.031709 0.000178 -1.100000 0.240000 3.007347 0.029398 0.000171 -1.100000 0.250000 3.006480 0.027213 0.000165 -1.100000 0.260000 3.006170 0.025398 0.000159 -1.100000 0.270000 3.005141 0.024227 0.000156 -1.100000 0.280000 3.005214 0.023235 0.000152 -1.100000 0.290000 3.004632 0.022470 0.000150 -1.100000 0.300000 3.004649 0.022319 0.000149 -1.125000 0.210000 3.012454 0.040510 0.000201 -1.125000 0.220000 3.010413 0.038206 0.000195 -1.125000 0.230000 3.008866 0.036104 0.000190 -1.125000 0.240000 3.009226 0.033669 0.000183 -1.125000 0.250000 3.007930 0.032674 0.000181 -1.125000 0.260000 3.007701 0.031808 0.000178 -1.125000 0.270000 3.008062 0.030920 0.000176 -1.125000 0.280000 3.008203 0.030530 0.000175 -1.125000 0.290000 3.009050 0.030141 0.000174 -1.125000 0.300000 3.008687 0.030756 0.000175 -1.150000 0.210000 3.012974 0.045820 0.000214 -1.150000 0.220000 3.013409 0.043385 0.000208 -1.150000 0.230000 3.011779 0.042445 0.000206 -1.150000 0.240000 3.011580 0.041212 0.000203 -1.150000 0.250000 3.011833 0.040755 0.000202 -1.150000 0.260000 3.010820 0.040180 0.000200 -1.150000 0.270000 3.011896 0.040141 0.000200 -1.150000 0.280000 3.013118 0.039851 0.000200 -1.150000 0.290000 3.012585 0.040880 0.000202 -1.150000 0.300000 3.012798 0.041624 0.000204 +0.925000 0.210000 3.058913 0.106720 0.000327 +0.925000 0.220000 3.052538 0.096423 0.000311 +0.925000 0.230000 3.048655 0.087686 0.000296 +0.925000 0.240000 3.042838 0.078520 0.000280 +0.925000 0.250000 3.040174 0.070879 0.000266 +0.925000 0.260000 3.037136 0.063816 0.000253 +0.925000 0.270000 3.030807 0.057092 0.000239 +0.925000 0.280000 3.028820 0.051202 0.000226 +0.925000 0.290000 3.024998 0.046333 0.000215 +0.925000 0.300000 3.020401 0.041188 0.000203 +0.950000 0.210000 3.045880 0.085547 0.000292 +0.950000 0.220000 3.042776 0.076742 0.000277 +0.950000 0.230000 3.036732 0.068630 0.000262 +0.950000 0.240000 3.031133 0.061198 0.000247 +0.950000 0.250000 3.029366 0.054173 0.000233 +0.950000 0.260000 3.025996 0.048252 0.000220 +0.950000 0.270000 3.020808 0.042441 0.000206 +0.950000 0.280000 3.020260 0.037127 0.000193 +0.950000 0.290000 3.018084 0.032343 0.000180 +0.950000 0.300000 3.014146 0.028325 0.000168 +0.975000 0.210000 3.035578 0.069035 0.000263 +0.975000 0.220000 3.030422 0.061130 0.000247 +0.975000 0.230000 3.027297 0.053697 0.000232 +0.975000 0.240000 3.023616 0.046960 0.000217 +0.975000 0.250000 3.020394 0.041076 0.000203 +0.975000 0.260000 3.017329 0.035892 0.000189 +0.975000 0.270000 3.016084 0.030882 0.000176 +0.975000 0.280000 3.012294 0.026868 0.000164 +0.975000 0.290000 3.010148 0.022837 0.000151 +0.975000 0.300000 3.007648 0.019329 0.000139 +1.000000 0.210000 3.027397 0.055972 0.000237 +1.000000 0.220000 3.022873 0.049370 0.000222 +1.000000 0.230000 3.018930 0.042737 0.000207 +1.000000 0.240000 3.017400 0.037081 0.000193 +1.000000 0.250000 3.014820 0.031966 0.000179 +1.000000 0.260000 3.011042 0.027694 0.000166 +1.000000 0.270000 3.009339 0.023523 0.000153 +1.000000 0.280000 3.007671 0.019836 0.000141 +1.000000 0.290000 3.006740 0.016731 0.000129 +1.000000 0.300000 3.004798 0.013946 0.000118 +1.025000 0.210000 3.021520 0.046790 0.000216 +1.025000 0.220000 3.018910 0.040580 0.000201 +1.025000 0.230000 3.015748 0.035139 0.000187 +1.025000 0.240000 3.012332 0.030381 0.000174 +1.025000 0.250000 3.009974 0.026292 0.000162 +1.025000 0.260000 3.008076 0.022528 0.000150 +1.025000 0.270000 3.006474 0.019284 0.000139 +1.025000 0.280000 3.004402 0.016419 0.000128 +1.025000 0.290000 3.004008 0.013784 0.000117 +1.025000 0.300000 3.002718 0.011718 0.000108 +1.050000 0.210000 3.016287 0.040776 0.000202 +1.050000 0.220000 3.013919 0.035822 0.000189 +1.050000 0.230000 3.010429 0.031364 0.000177 +1.050000 0.240000 3.008584 0.027341 0.000165 +1.050000 0.250000 3.007490 0.023641 0.000154 +1.050000 0.260000 3.005663 0.020758 0.000144 +1.050000 0.270000 3.004210 0.018246 0.000135 +1.050000 0.280000 3.003828 0.015817 0.000126 +1.050000 0.290000 3.003462 0.013989 0.000118 +1.050000 0.300000 3.002826 0.012358 0.000111 +1.075000 0.210000 3.013246 0.038215 0.000195 +1.075000 0.220000 3.010884 0.034017 0.000184 +1.075000 0.230000 3.008825 0.030238 0.000174 +1.075000 0.240000 3.007200 0.027030 0.000164 +1.075000 0.250000 3.006945 0.023907 0.000155 +1.075000 0.260000 3.005653 0.021450 0.000146 +1.075000 0.270000 3.003581 0.019963 0.000141 +1.075000 0.280000 3.003171 0.018353 0.000135 +1.075000 0.290000 3.003400 0.016709 0.000129 +1.075000 0.300000 3.002960 0.015967 0.000126 +1.100000 0.210000 3.011709 0.037935 0.000195 +1.100000 0.220000 3.010307 0.034425 0.000186 +1.100000 0.230000 3.009692 0.031435 0.000177 +1.100000 0.240000 3.007759 0.029021 0.000170 +1.100000 0.250000 3.007560 0.026960 0.000164 +1.100000 0.260000 3.006724 0.025109 0.000158 +1.100000 0.270000 3.005851 0.024074 0.000155 +1.100000 0.280000 3.004748 0.023351 0.000153 +1.100000 0.290000 3.004264 0.022704 0.000151 +1.100000 0.300000 3.005299 0.022141 0.000149 +1.125000 0.210000 3.012270 0.040512 0.000201 +1.125000 0.220000 3.010200 0.038192 0.000195 +1.125000 0.230000 3.009738 0.035823 0.000189 +1.125000 0.240000 3.009311 0.034197 0.000185 +1.125000 0.250000 3.009132 0.032326 0.000180 +1.125000 0.260000 3.008219 0.031734 0.000178 +1.125000 0.270000 3.008864 0.030734 0.000175 +1.125000 0.280000 3.008436 0.030539 0.000175 +1.125000 0.290000 3.006773 0.031102 0.000176 +1.125000 0.300000 3.008238 0.030643 0.000175 +1.150000 0.210000 3.011833 0.046493 0.000216 +1.150000 0.220000 3.011270 0.044010 0.000210 +1.150000 0.230000 3.010390 0.042478 0.000206 +1.150000 0.240000 3.011530 0.041137 0.000203 +1.150000 0.250000 3.011711 0.040489 0.000201 +1.150000 0.260000 3.012785 0.040046 0.000200 +1.150000 0.270000 3.012631 0.039918 0.000200 +1.150000 0.280000 3.012002 0.040364 0.000201 +1.150000 0.290000 3.012610 0.040443 0.000201 +1.150000 0.300000 3.012983 0.041655 0.000204 diff --git a/doc/pub/week2/ipynb/week2.ipynb b/doc/pub/week2/ipynb/week2.ipynb index 34d45c8f..c4e89419 100644 --- a/doc/pub/week2/ipynb/week2.ipynb +++ b/doc/pub/week2/ipynb/week2.ipynb @@ -3,9 +3,7 @@ { "cell_type": "markdown", "id": "d6eff1d9", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "\n", @@ -15,9 +13,7 @@ { "cell_type": "markdown", "id": "684bbe5c", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "# Week 4 January 22-26, Building a Variational Monte Carlo program \n", "**Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no**, Department of Physics and Center fo Computing in Science Education, University of Oslo, Oslo, Norway and Department of Physics and Astronomy and Facility for Rare Ion Beams, Michigan State University, East Lansing, Michigan, USA\n", @@ -28,9 +24,7 @@ { "cell_type": "markdown", "id": "a20009a8", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Overview of week 4, January 22-26\n", "**Topics.**\n", @@ -53,9 +47,7 @@ { "cell_type": "markdown", "id": "f9c0217e", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Code templates for first project\n", "\n", @@ -67,9 +59,7 @@ { "cell_type": "markdown", "id": "3e71907a", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Basic Quantum Monte Carlo, repetition from last week\n", "\n", @@ -80,9 +70,7 @@ { "cell_type": "markdown", "id": "93e92f48", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\cal {E}[H] =\n", @@ -94,9 +82,7 @@ { "cell_type": "markdown", "id": "700488c7", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "is an upper bound to the ground state energy $E_0$ of the hamiltonian $H$, that is" ] @@ -104,9 +90,7 @@ { "cell_type": "markdown", "id": "40948096", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "E_0 \\le {\\cal E}[H].\n", @@ -116,9 +100,7 @@ { "cell_type": "markdown", "id": "7893f2ac", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Multi-dimensional integrals\n", "\n", @@ -133,9 +115,7 @@ { "cell_type": "markdown", "id": "5ce6b038", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Trail functions\n", "\n", @@ -146,9 +126,7 @@ { "cell_type": "markdown", "id": "7504aac9", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\Psi_T(\\boldsymbol{R};\\boldsymbol{\\alpha})=\\sum_i a_i\\Psi_i(\\boldsymbol{R}),\n", @@ -158,9 +136,7 @@ { "cell_type": "markdown", "id": "cbf0c076", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "and assuming that the set of eigenfunctions are normalized, one obtains" ] @@ -168,9 +144,7 @@ { "cell_type": "markdown", "id": "3e343e67", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\frac{\\sum_{nm}a^*_ma_n \\int d\\boldsymbol{R}\\Psi^{\\ast}_m(\\boldsymbol{R})H(\\boldsymbol{R})\\Psi_n(\\boldsymbol{R})}\n", @@ -182,9 +156,7 @@ { "cell_type": "markdown", "id": "c73d40f1", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "where we used that $H(\\boldsymbol{R})\\Psi_n(\\boldsymbol{R})=E_n\\Psi_n(\\boldsymbol{R})$." ] @@ -192,9 +164,7 @@ { "cell_type": "markdown", "id": "c5eb2752", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Variational principle\n", "The variational principle yields the lowest energy of states with a given symmetry.\n", @@ -213,9 +183,7 @@ { "cell_type": "markdown", "id": "4ecad58d", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Tedious parts of VMC calculations\n", "\n", @@ -234,9 +202,7 @@ { "cell_type": "markdown", "id": "1d25bbf8", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Bird's eye view on Variational MC\n", "\n", @@ -250,9 +216,7 @@ { "cell_type": "markdown", "id": "aebf840c", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\overline{E}[\\boldsymbol{\\alpha}]=\\frac{\\int d\\boldsymbol{R}\\Psi^{\\ast}_{T}(\\boldsymbol{R},\\boldsymbol{\\alpha})H(\\boldsymbol{R})\\Psi_{T}(\\boldsymbol{R},\\boldsymbol{\\alpha})}\n", @@ -263,9 +227,7 @@ { "cell_type": "markdown", "id": "bce8403c", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "1. Thereafter we vary $\\boldsymbol{\\alpha}$ according to some minimization algorithm and return eventually to the first step if we are not satisfied with the results.\n", "\n", @@ -275,9 +237,7 @@ { "cell_type": "markdown", "id": "e8245e89", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Linking with standard statistical expressions for expectation values\n", "\n", @@ -287,9 +247,7 @@ { "cell_type": "markdown", "id": "c1a1d604", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "P(\\boldsymbol{R})= \\frac{\\left|\\psi_T(\\boldsymbol{R};\\boldsymbol{\\alpha})\\right|^2}{\\int \\left|\\psi_T(\\boldsymbol{R};\\boldsymbol{\\alpha})\\right|^2d\\boldsymbol{R}}.\n", @@ -299,9 +257,7 @@ { "cell_type": "markdown", "id": "7536d3a7", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "This is our model for probability distribution function.\n", "The approximation to the expectation value of the Hamiltonian is now" @@ -310,9 +266,7 @@ { "cell_type": "markdown", "id": "9e9b119e", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\overline{E}[\\boldsymbol{\\alpha}] = \n", @@ -324,9 +278,7 @@ { "cell_type": "markdown", "id": "79367e25", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## The local energy\n", "We define a new quantity" @@ -335,9 +287,7 @@ { "cell_type": "markdown", "id": "d7e591d8", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "\n", "
\n", @@ -351,9 +301,7 @@ { "cell_type": "markdown", "id": "3471badb", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "called the local energy, which, together with our trial PDF yields a new expression (and which look simlar to the the expressions for moments in statistics)" ] @@ -361,9 +309,7 @@ { "cell_type": "markdown", "id": "d674a852", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "\n", "
\n", @@ -377,9 +323,7 @@ { "cell_type": "markdown", "id": "83fb79e5", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "with $N$ being the number of Monte Carlo samples. The expression on the right hand side follows from Bernoulli's law of large numbers, which states that the sample mean, in the limit $N\\rightarrow \\infty$ approaches the true mean" ] @@ -387,9 +331,7 @@ { "cell_type": "markdown", "id": "d823a042", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## The Monte Carlo algorithm\n", "\n", @@ -415,9 +357,7 @@ { "cell_type": "markdown", "id": "d2310e67", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Example from last week, the harmonic oscillator in one dimension (best seen with jupyter-notebook)\n", "\n", @@ -434,9 +374,7 @@ { "cell_type": "markdown", "id": "6ce44d38", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\psi_T(x;\\alpha) = \\exp{-(\\frac{1}{2}\\alpha^2x^2)},\n", @@ -446,9 +384,7 @@ { "cell_type": "markdown", "id": "d3a90c0d", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "which results in a local energy" ] @@ -456,9 +392,7 @@ { "cell_type": "markdown", "id": "7265610e", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\frac{1}{2}\\left(\\alpha^2+x^2(1-\\alpha^4)\\right).\n", @@ -468,9 +402,7 @@ { "cell_type": "markdown", "id": "829a7cda", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "We can compare our numerically calculated energies with the exact energy as function of $\\alpha$" ] @@ -478,9 +410,7 @@ { "cell_type": "markdown", "id": "193f46cc", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\overline{E}[\\alpha] = \\frac{1}{4}\\left(\\alpha^2+\\frac{1}{\\alpha^2}\\right).\n", @@ -490,9 +420,7 @@ { "cell_type": "markdown", "id": "e530a70c", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "Similarly, with the above ansatz, we can also compute the exact variance which reads" ] @@ -500,9 +428,7 @@ { "cell_type": "markdown", "id": "063231f1", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\sigma^2[\\alpha]=\\frac{1}{4}\\left(1+(1-\\alpha^4)^2\\frac{3}{4\\alpha^4}\\right)-\\overline{E}.\n", @@ -512,9 +438,7 @@ { "cell_type": "markdown", "id": "1fad9d90", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "Our code for computing the energy of the ground state of the harmonic oscillator follows here. We start by defining directories where we store various outputs." ] @@ -523,10 +447,7 @@ "cell_type": "code", "execution_count": 1, "id": "584282b5", - "metadata": { - "collapsed": false, - "editable": true - }, + "metadata": {}, "outputs": [], "source": [ "# Common imports\n", @@ -561,9 +482,7 @@ { "cell_type": "markdown", "id": "3f5bdfc9", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "We proceed with the implementation of the Monte Carlo algorithm but list first the ansatz for the wave function and the expression for the local energy" ] @@ -572,10 +491,7 @@ "cell_type": "code", "execution_count": 2, "id": "2f5baced", - "metadata": { - "collapsed": false, - "editable": true - }, + "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", @@ -599,9 +515,7 @@ { "cell_type": "markdown", "id": "34fc14b6", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "Note that in the Metropolis algorithm there is no need to compute the\n", "trial wave function, mainly since we are just taking the ratio of two\n", @@ -615,10 +529,7 @@ "cell_type": "code", "execution_count": 3, "id": "a34f2811", - "metadata": { - "collapsed": false, - "editable": true - }, + "metadata": {}, "outputs": [], "source": [ "# The Monte Carlo sampling with the Metropolis algo\n", @@ -667,9 +578,7 @@ { "cell_type": "markdown", "id": "42215fbe", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "Finally, the results are presented here with the exact energies and variances as well." ] @@ -678,11 +587,46 @@ "cell_type": "code", "execution_count": 4, "id": "459af09b", - "metadata": { - "collapsed": false, - "editable": true - }, - "outputs": [], + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHLCAYAAAA0kLlRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+QUlEQVR4nO3dd3hT5fvH8XdGm3TvRVto2ZS9l4ioTAUBFQVlKPgVB4IICg4QFz9RcTNEhsoQBygqMmSKgKyC7FE6GB1075Wc3x+FamkpTWmSNr1f15Wr7ckZd06h+eQ5z3kelaIoCkIIIYQQNkJt7QKEEEIIIaqShBshhBBC2BQJN0IIIYSwKRJuhBBCCGFTJNwIIYQQwqZIuBFCCCGETZFwI4QQQgibIuFGCCGEEDZFwo0QQgghbIqEGyGsaNmyZahUqhs+tm/fbu0SbcL27dur3fm89ruPioqydilC2ByttQsQQsDSpUtp2rRpqeVhYWFWqEZYwj333MOePXsICAiwdilC2BwJN0JUAy1atKBDhw7WLoOCggJUKhVarfxpMJecnBz0ej0+Pj74+PhYuxwhbJJclhKihlCpVDz77LN88803NGvWDEdHR1q3bs2vv/5aat2zZ88yYsQIfH190el0NGvWjM8//7zEOtcu1XzzzTe88MILBAYGotPpOHfuHACLFi2icePG6HQ6wsLCWLlyJWPGjCEkJAQARVFo1KgRffv2LXX8zMxM3NzceOaZZ8p9TZ9//jm33347vr6+ODk50bJlS+bMmUNBQUGJ9e644w5atGjB/v376dGjB46OjtSvX5//+7//w2g0llj31KlT9OvXD0dHR7y9vRk/fjwZGRk3Pb8//fQTKpWKLVu2lHpu/vz5qFQq/vnnHwAOHDjAww8/TEhICA4ODoSEhDB8+HCio6NLbHft0tOmTZt4/PHH8fHxwdHRkby8vDIvS23evJn77ruPoKAg9Ho9DRs25MknnyQxMbHEfl9//XVUKhXHjx9n+PDhuLm54efnx+OPP05aWlqJdY1GI59++ilt2rTBwcEBd3d3unTpwrp160qst3r1arp27YqTkxPOzs707duX8PDwm543Iaoj+XgmRDVgMBgoLCwssUylUqHRaEos++2339i/fz9vvPEGzs7OzJkzhyFDhnD69Gnq168PwIkTJ+jWrRt169blgw8+wN/fn40bN/Lcc8+RmJjIzJkzS+xz+vTpdO3alQULFqBWq/H19eWLL77gySef5P777+fDDz8kLS2NWbNmkZeXV6K+CRMmMGnSJM6ePUujRo2Kn/v6669JT0+/abiJiIhgxIgRhIaGYm9vz5EjR3j77bc5deoUS5YsKbFuXFwcjzzyCC+88AIzZ85k7dq1TJ8+nTp16jBq1CgA4uPj6dmzJ3Z2dsybNw8/Pz9WrFjBs88+e9Pfwb333ouvry9Lly7lrrvuKvHcsmXLaNeuHa1atQIgKiqKJk2a8PDDD+Pp6UlsbCzz58+nY8eOnDhxAm9v7xLbP/7449xzzz188803ZGVlYWdnd8Pz0bVrV8aNG4ebmxtRUVHMnTuX2267jaNHj5ba7v777+ehhx5i7NixHD16lOnTpwOUOHdjxoxh+fLljB07ljfeeAN7e3sOHTpUIlS98847vPrqqzz22GO8+uqr5Ofn895779GjRw/27dsnl0dFzaMIIaxm6dKlClDmQ6PRlFgXUPz8/JT09PTiZXFxcYparVZmz55dvKxv375KUFCQkpaWVmL7Z599VtHr9UpycrKiKIqybds2BVBuv/32EusZDAbF399f6dy5c4nl0dHRip2dnVKvXr3iZenp6YqLi4syceLEEuuGhYUpvXr1MulcGAwGpaCgQPn6668VjUZTXKeiKErPnj0VQPn7779LHadv377FP7/00kuKSqVSDh8+XGK93r17K4Cybdu2cmuYPHmy4uDgoKSmphYvO3HihAIon3766Q23KywsVDIzMxUnJyfl448/Ll5+7fc7atSoUttcey4yMrLMfRqNRqWgoECJjo5WAOXnn38ufm7mzJkKoMyZM6fENk8//bSi1+sVo9GoKIqi7Ny5UwGUV1555Ya1x8TEKFqtVpkwYUKJ5RkZGYq/v78ybNiwG24rRHUll6WEqAa+/vpr9u/fX+Lx999/l1qvV69euLi4FP/s5+eHr69v8eWQ3NxctmzZwpAhQ3B0dKSwsLD4MWDAAHJzc9m7d2+Jfd5///0lfj59+jRxcXEMGzasxPK6devSvXv3EstcXFx47LHHWLZsGVlZWQBs3bqVEydOVKi1JDw8nEGDBuHl5YVGo8HOzo5Ro0ZhMBg4c+ZMiXX9/f3p1KlTiWWtWrUqcSlo27ZtNG/enNatW5dYb8SIETetBYpaWHJycli9enXxsqVLl6LT6UrsIzMzk5deeomGDRui1WrRarU4OzuTlZXFyZMnS+33+nN8IwkJCYwfP57g4GC0Wi12dnbUq1cPoMz9Dho0qMTPrVq1Ijc3l4SEBAB+//13gHJb0DZu3EhhYSGjRo0q8e9Fr9fTs2fPanWHmRAVJZelhKgGmjVrVqEOxV5eXqWW6XQ6cnJyAEhKSqKwsJBPP/2UTz/9tMx9XN9/4/q7dZKSkoCi4HQ9Pz8/IiMjSyybMGECn332GStWrOB///sfn332GUFBQdx3333lvpaYmBh69OhBkyZN+PjjjwkJCUGv17Nv3z6eeeaZ4tdU0dd+rfbQ0NBS6/n7+5dbyzXNmzenY8eOLF26lP/9738YDAaWL1/Offfdh6enZ/F6I0aMYMuWLbz22mt07NgRV1dXVCoVAwYMKFU3lD7HZTEajfTp04fLly/z2muv0bJlS5ycnDAajXTp0qXM/V5/TnQ6HUDxuleuXEGj0ZT7+uPj4wHo2LFjmc+r1fIZWNQ8Em6EsCEeHh5oNBpGjhx5w0/r17/5q1SqEj9fe8O89qb3X3FxcaWWNWzYkP79+/P555/Tv39/1q1bx6xZs0r1F7reTz/9RFZWFmvWrClunQA4fPhwuduVx8vLq8way1p2I4899hhPP/00J0+e5Pz588TGxvLYY48VP5+Wlsavv/7KzJkzmTZtWvHyvLw8kpOTy9zn9ee4LMeOHePIkSMsW7aM0aNHFy+/1sG7Mnx8fDAYDMTFxd0wYF3rH/TDDz+U+D0IUZNJJBfChjg6OtKrVy/Cw8Np1aoVHTp0KPUoqwXkv5o0aYK/vz/fffddieUxMTHs3r27zG0mTpzIP//8w+jRo9FoNDzxxBM3rfXaG/611gYougNr0aJFN932Rnr16sXx48c5cuRIieUrV66s8D6GDx+OXq9n2bJlLFu2jMDAQPr06VOibkVRStQN8OWXX2IwGCpde1nnA2DhwoWV3mf//v2Boru9bqRv375otVoiIiLK/PdSHYYoEMJU0nIjRDVw7NixUndLATRo0MDksVA+/vhjbrvtNnr06MFTTz1FSEgIGRkZnDt3jl9++YWtW7eWu71arWbWrFk8+eSTPPDAAzz++OOkpqYya9YsAgICyrxM0bt3b8LCwti2bRuPPvoovr6+N62zd+/e2NvbM3z4cF588UVyc3OZP38+KSkpJr3e/5o0aRJLlizhnnvu4a233iq+W+rUqVMV3oe7uztDhgxh2bJlpKamMmXKlBKv2dXVldtvv5333nsPb29vQkJC2LFjB4sXL8bd3b3StTdt2pQGDRowbdo0FEXB09OTX375hc2bN1d6nz169GDkyJG89dZbxMfHc++996LT6QgPD8fR0ZEJEyYQEhLCG2+8wSuvvML58+fp168fHh4exMfHs2/fPpycnJg1a1alaxDCGqTlRohq4LHHHqNr166lHj///LPJ+woLC+PQoUO0aNGCV199lT59+jB27Fh++OGHUrc438j//vc/vvjiC44cOcKQIUOYNWsW06ZNo23btjd8A7/WAbkiHYmh6M38xx9/JCUlhaFDhzJhwgTatGnDJ598UqHty+Lv78+OHTsICwvjqaee4tFHH0Wv1/PZZ5+ZtJ/HHnuMhIQE8vPzGTNmTKnnV65cSa9evXjxxRcZOnQoBw4cYPPmzbi5uVW6djs7O3755RcaN27Mk08+yfDhw0lISOCPP/6o9D6h6Db2uXPnsnv3bh544AGGDRvGzz//XOLy5PTp0/nhhx84c+YMo0ePpm/fvrz44otER0dz++2339LxhbAGlaIoirWLEEJUf6mpqTRu3JjBgwfzxRdflHq+Q4cOqFQq9u/fb4XqhBDiX3JZSghRSlxcHG+//Ta9evXCy8uL6OhoPvzwQzIyMpg4cWLxeunp6Rw7doxff/2VgwcPsnbtWitWLYQQRSTcCCFK0el0REVF8fTTT5OcnIyjoyNdunRhwYIFNG/evHi9Q4cOFQegmTNnMnjwYOsVLYQQV8llKSGEEELYFOlQLIQQQgibIuFGCCGEEDZFwo0QQgghbEqt61BsNBq5fPkyLi4uFRoSXQghhBDWpygKGRkZ1KlT56ZzntW6cHP58mWCg4OtXYYQQgghKuHChQsEBQWVu06tCzcuLi5A0clxdXW1cjVCCCGEqIj09HSCg4OL38fLU+vCzbVLUa6urhJuhBBCiBqmIl1KpEOxEEIIIWyKhBshhBBC2BQJN0IIIYSwKRJuqtKhQ7BmjbWrEEIIIWq1Wteh2Gy2b4devcDD49+vQgghhLA4abmpKj16QIsWkJICs2dbuxohhBCi1jI53Cxbtozs7Gxz1FKzaTQwZ07R9598AtHR1q1HCCGEqKVMDjfTp0/H39+fsWPHsnv3bnPUVHP16wd33gl5efDqq9auRgghhKiVTA43Fy9eZPny5aSkpNCrVy+aNm3Ku+++S1xcnDnqq1lUqn9bb5Yvh/Bw69YjhBBC1EImhxuNRsOgQYNYs2YNFy5c4H//+x8rVqygbt26DBo0iJ9//hmj0WiOWmuG9u3hkUeKvp86FRTFuvUIIYQQtcwtdSj29fWle/fudO3aFbVazdGjRxkzZgwNGjRg+/btVVRiDfTWW2BvD1u2wKZN1q5GCCGEqFUqFW7i4+N5//33ad68OXfccQfp6en8+uuvREZGcvnyZYYOHcro0aOrutaaIyQEJkwo+n7qVDAYrFqOEEIIUZuoFMW06yYDBw5k48aNNG7cmHHjxjFq1Cg8PT1LrHP58mWCgoKq5eWp9PR03NzcSEtLM+/EmcnJ0KABpKbC0qUwZoz5jiWEEELYOFPev01uufH19WXHjh0cO3aMSZMmlQo2AAEBAURGRpq6a9vi6QmvvFL0/auvQk6OdesRQgghagmTW25qOou13ADk5kLTpkVj3syeDdOmmfd4QgghhI0y5f3b5HDzySeflL0jlQq9Xk/Dhg25/fbb0Wg0puzWYiwabgBWrIBHHwVXVzh3Dnx8zH9MIYQQwsaYNdyEhoZy5coVsrOz8fDwQFEUUlNTcXR0xNnZmYSEBOrXr8+2bdsIDg6+pRdiDhYPN0YjdOhQNObNc8/Bxx+b/5hCCCGEjTFrn5t33nmHjh07cvbsWZKSkkhOTubMmTN07tyZjz/+mJiYGPz9/Xn++edvuq+dO3cycOBA6tSpg0ql4qeffip3/TVr1tC7d298fHxwdXWla9eubNy40dSXYFlqNbz3XtH38+YVtd4IIYQQwmxMDjevvvoqH374IQ0aNChe1rBhQ95//32mT59OUFAQc+bM4a+//rrpvrKysmjdujWfffZZhY69c+dOevfuzfr16zl48CC9evVi4MCBhFf3kYDvugv694fCwn87GQshhBDCLLSmbhAbG0thYWGp5YWFhcVTMNSpU4eMjIyb7qt///7079+/wsf+6KOPSvz8zjvv8PPPP/PLL7/Qtm3bCu/HKt59FzZsgO++g8mToXNna1ckhBBC2CSTW2569erFk08+WaK1JDw8nKeeeoo777wTgKNHjxIaGlp1Vd6A0WgkIyOjzNvRr8nLyyM9Pb3EwxwMRoU9EUn8fPgSeyKSMBiv68rUsuW/Y93ItAxCCCGE2ZgcbhYvXoynpyft27dHp9Oh0+no0KEDnp6eLF68GABnZ2c++OCDKi/2eh988AFZWVkMGzbshuvMnj0bNze34oc5OjlvOBbLbe9uZfiivUz89jDDF+3ltne3suFYbMkV33gDHBzgzz/hl1+qvA4hhBBCmHi3lKIoxMTE4OPjw4ULFzh9+jSKotC0aVOaNGlya4WoVKxdu5bBgwdXaP1Vq1Yxbtw4fv75Z+6+++4brpeXl0deXl7xz+np6QQHB1fZ3VIbjsXy1PJDXH8SVVe/zn+0Hf1aBPz7xCuvwDvvFI1/c/QoaE2+MiiEEELUOqbcLWXSO6uiKDRq1Ijjx4/TpEmTWw40lbV69WrGjh3L999/X26wAYpbl8zBYFSY9cuJUsEGQKEo4Mz65QS9w/zRqK/GnRdfhC++gFOnYPFiePJJs9QmhBBC1FYmXZZSq9U0atSIpKQkc9VzU6tWrWLMmDGsXLmSe+65x2p1AOyLTCY2LfeGzytAbFou+yKT/13o5gYzZhR9P3MmZGaat0ghhBCiljG5z82cOXOYOnUqx44du+WDZ2ZmcvjwYQ4fPgxAZGQkhw8fJiYmBoDp06czatSo4vVXrVrFqFGj+OCDD+jSpQtxcXHExcWRlpZ2y7VURkLGjYNNues9+SQ0bAjx8WCBvklCCCFEbWJyuHn00UfZt28frVu3xsHBAU9PzxIPUxw4cIC2bdsW38Y9efJk2rZty4yrLRuxsbHFQQdg4cKFFBYW8swzzxAQEFD8mDhxoqkvo0r4uugrt569fdFcU1A0wN/VW+iFEEIIcetMnn7hq6++Kvf50aNH31JB5laV0y8YjAq3vbuVuLTcMvvdXPNwp2BeHtAMV73dvwsVBbp2hb//LmrJWbDglmoRQgghbJlZ55aq6ap6bqlrd0sBJQKO6rqffV10vHFfC/q18P934Z9/wu23g0ZTdOdUs2a3XI8QQghhi8w6txRAREQEr776KsOHDychIQGADRs2cPz48crsrkbr1yKA+Y+2w9+t5KUnfzc9Cx5tx6onuhDq7URCRh7jlx/kyW8OEJ9+tQ9Ojx5w331gMMD06VaoXgghhLA9Jrfc7Nixg/79+9O9e3d27tzJyZMnqV+/PnPmzGHfvn388MMP5qq1SphrVnCDUWFfZDIJGbn4uujpFOpZfPt3boGBT7eeZeGO8xQaFVx0WqYNaMrwjnVRnzkNLVoUBZydO4sCjxBCCCFKMGvLzbRp03jrrbfYvHkz9vb2xct79erFnj17TK/WRmjUKro28OK+NoF0beD177g2gN5Ow9S+Tfllwm20DnIjI6+QV9Ye4+Ev9nLOMwieeKJoxSlTZFoGIYQQ4haZHG6OHj3KkCFDSi338fGx6vg3NUGzAFfWPN2d1+4Nw9Few76oZAZ8/Cdf3jkSxckJ9u2Dat7yJYQQQlR3Jocbd3d3YmNjSy0PDw8nMDCwSoqyZRq1irG3hbLp+du5o4kP+QYjbx1M4ZvbHixaYfp0yM+3bpFCCCFEDWZyuBkxYgQvvfQScXFxqFQqjEYjf/31F1OmTCkx4J4oX5CHI0vHdOTjh9vg6WTP/4XdQ4KTB0REkPfZ59YuTwghhKixTO5QXFBQwJgxY/j2229RFAWtVovBYGDEiBEsW7YMjUZjrlqrhLk6FN+K5Kx83vrtBLoli5m98TNSHV05sv0APTs2Kl6nvA7LQgghhK2zyDg3ERERhIeHYzQaadu2LY0aNbr5RtVAdQw31/x5Mpbgnl0IuRLD510e5NRz05lxbxgHo5OZ9cuJEvNYBbjpmTkwrOSM40IIIYSNkkH8ylGdww1A3o9r0T0wlFytPXc88QXp3n5k5xtKrXetzWb+o+0k4AghhLB5prx/a03ducFgYNmyZWzZsoWEhASMRmOJ57du3WrqLsV/6IYOhttvR79zJ28e/JYnej1b5noKRQFn1i8n6B3mL5eohBBCiKtMDjcTJ05k2bJl3HPPPbRo0QKVSt5Uq5RKVTSZZufO3L1/I02b38Mp39AyV1WA2LRc9kUm07WBl2XrFEIIIaopk8PNt99+y3fffceAAQPMUY8A6NQJhg1D9d13TNu+jDHDZpW7ekJGbrnPCyGEELWJybeC29vb07BhQ3PUIv7rnXcw2tlxR+RBukcdLndVXxd9uc8LIYQQtYnJ4eaFF17g448/ppb1Q7a8Bg3gqacAeHnbElSKsdQqKorumuoU6mnh4oQQQojqy+TLUrt27WLbtm38/vvvNG/eHDs7uxLPr1mzpsqKq+3Ur71GwZKlNE84z+ATO1jbvFepdWYODJPOxEIIIcR/mBxu3N3dy5xbSpiBtzd2r7wM06fz4q5vWN+kO3nafycrHdW1ntwGLoQQQlxHxrmp7nJyoHFjuHiR6JdmcvjhJ/j7fBIr913A21nHtik9cdHb3Xw/QgghRA1myvu3yX1uAAoLC/njjz9YuHAhGRkZAFy+fJnMzMzK7E6Ux8EB3nwTgHoLPuK+YD2vD2pBfW8nEjPz+HTrOSsXKIQQQlQvJoeb6OhoWrZsyX333cczzzzDlStXAJgzZw5Tpkyp8gIFMHIktGoFaWkwcyb2WjWvDQwDYMmuSM4lSKgUQgghrjE53EycOJEOHTqQkpKCg4ND8fIhQ4awZcuWKi1OXKXRwAcfFH3/+eewdi29mvhyV1NfCo0Kb/x6Qu5eE0IIIa4yOdzs2rWLV199FXt7+xLL69Wrx6VLl6qsMHGdu++GF14o+v6xxyAigtfuDcNeo2bnmStsOZlg3fqEEEKIasLkcGM0GjEYSk/kePHiRVxcXKqkKHEDs2dD9+5Fl6cefJAQZw1jexRNzfDGryfILSj9exFCCCFqG5PDTe/evfnoo4+Kf1apVGRmZjJz5kyZksHc7Ozg22/B2xvCw2HSJJ7t1RA/Vx0xydks3hVp7QqFEEIIqzP5VvDLly/Tq1cvNBoNZ8+epUOHDpw9exZvb2927tyJr6+vuWqtEjXuVvCybNoE/fqBosDy5fwUdgeTVh/G0V7D1hfuwN9NpmMQQghhW0x5/67UODc5OTl8++23HDx4EKPRSLt27XjkkUdKdDCurmwi3ADMnAlvvAFOTij79vHAjlQORqcwuE0dPnq4rbWrE0IIIaqU2cNNTWYz4cZggL59YcsWCAvj+E+buXdJOIoCP4zvSocQmW9KCCGE7TD7IH6iGtBoYMUKCAiAEydo/sZLPNwhCICZ645jMNaqzCqEEEIUs2q42blzJwMHDqROnTqoVCp++umnm26zY8cO2rdvj16vp379+ixYsMD8hVZXfn6wenVR0Fm+nFcu/4WLXsvxy+ms3n/B2tUJIYQQVmHVcJOVlUXr1q357LPPKrR+ZGQkAwYMoEePHoSHh/Pyyy/z3HPP8eOPP5q50mqsRw945x0AnKdO5q16BQC8t/EUadkF1qxMCCGEsIpq0+dGpVKxdu1aBg8efMN1XnrpJdatW8fJkyeLl40fP54jR46wZ8+eCh3HZvrc/JfRCPfdB7/+itKgAUMe/5jD6TCmWwivD2pu7eqEEEKIW2bWPjcXLlzg4sWLxT/v27ePSZMm8cUXX5heqYn27NlDnz59Sizr27cvBw4coKCg7FaKvLw80tPTSzxsjloNX30F9eqhiojgyx3zQVH4Zm80p+Js8PUKIYQQ5TA53IwYMYJt27YBEBcXR+/evdm3bx8vv/wyb7zxRpUX+F9xcXH4+fmVWObn50dhYSGJiYllbjN79mzc3NyKH8HBwWat0Wo8PeH778HODu9Nv/HepW0YjAqz1sm8U0IIIWoXk8PNsWPH6NSpEwDfffcdLVq0YPfu3axcuZJly5ZVdX2lqFSqEj9fe+O+fvk106dPJy0trfhx4YINd7Tt2BHmzgXggdWf0DnuNHvOJ/H7sTgrFyaEEEJYjsnhpqCgAJ1OB8Aff/zBoEGDAGjatCmxsbFVW911/P39iYsr+UadkJCAVqvFy8urzG10Oh2urq4lHjbtmWdg2DBUhYV8+dt7eGSn8fZvJ8nJl3mnhBBC1A4mh5vmzZuzYMEC/vzzTzZv3ky/fv2AomkZbhQwqkrXrl3ZvHlziWWbNm2iQ4cO2NnZmfXYNYZKBV9+CY0b45IYx+cbP+ZyShYLd0ZYuzIhhBDCIkwON++++y4LFy7kjjvuYPjw4bRu3RqAdevWFV+uqqjMzEwOHz7M4cOHgaJbvQ8fPkxMTAxQdElp1KhRxeuPHz+e6OhoJk+ezMmTJ1myZAmLFy9mypQppr4M2+biUtT/Rq+n25l9PL3ne+Zvj+BiSra1KxNCCCHMrlK3ghsMBtLT0/Hw8CheFhUVhaOjo0kTZ27fvp1evXqVWj569GiWLVvGmDFjiIqKYvv27cXP7dixg+eff57jx49Tp04dXnrpJcaPH1/hY9rkreA3snQpPP44RpWaRx56C497+zDvkfbWrkoIIYQwmVnnlsrJyUFRFBwdHQGIjo5m7dq1NGvWjL59+1a+agupVeEG4PHHYelSrji5M2DMJ3w8qT/dGnpbuyohhBDCJGYd5+a+++7j66+/BiA1NZXOnTvzwQcfMHjwYObPn1+5ioX5fPYZtGyJT1Yqn66bwxs/HaHQYLR2VUIIIYTZmBxuDh06RI8ePQD44Ycf8PPzIzo6mq+//ppPPvmkygsUt8jREb7/HsXZmS4XjnHvmi9Yvjfa2lUJIYQQZmNyuMnOzsbFxQUoulNp6NChqNVqunTpQnS0vGlWS02aoPrySwCe3fMd++YtJykzz8pFCSGEEOZhcrhp2LAhP/30ExcuXGDjxo3F0yEkJCTUjj4sNdVDD2F8+mkA3l7zHotW7LByQUIIIYR5mBxuZsyYwZQpUwgJCaFTp0507doVKGrFadu2bZUXKKqOeu5cMlu1xSM3g75vPMfxyCvWLkkIIYSocpW6FTwuLo7Y2Fhat26NWl2Uj/bt24erqytNmzat8iKrUq27W+p6UVFkN2+FY3YGv/Z6kHu2rL7h1BVCCCFEdWHWu6WgaBoEFxcXNm/eTE5ODgAdO3as9sFGACEh5C5eAsC9275n//vmn81dCCGEsCSTw01SUhJ33XUXjRs3ZsCAAcXzSY0bN44XXnihygsUVc/z4Qc49PATADR/bTLZJ05ZuSIhhBCi6pgcbp5//nns7OyIiYkpHsgP4KGHHmLDhg1VWpwwn7Aln3IktCVOedlkDBwCV1vghBBCiJrO5HCzadMm3n33XYKCgkosb9SokdwKXoPoHXSkLf6aREc3/M6fImrEWH4+fIk9EUkYjCZ3wxJCCCGqDZPDTVZWVokWm2sSExPR6XRVUpSwjB53tGbu6JkYURHy0yp2vPoBwxft5bZ3t7LhWKy1yxNCCCEqxeRwc/vttxdPvwCgUqkwGo289957ZU6CKaqvjcfjWOnamI9uGwHAW5vm0Tw+gri0XJ5afkgCjhBCiBrJ5FvBT5w4wR133EH79u3ZunUrgwYN4vjx4yQnJ/PXX3/RoEEDc9VaJWr9reBXGYwKt727ldi0XNRGA8u+f53bo8JJ0zkxatgb/FOnCf5uena9dCcatdwqLoQQwrrMeit4WFgY//zzD506daJ3795kZWUxdOhQwsPDq32wEf/aF5lMbFouAEa1hmcGT+NAYDPc8rJYvvpV2l88TmxaLvsik61cqRBCCGEabWU28vf3Z9asWVVdi7CghIzcEj9nXG2x+fLHN+kW8w9ffzeDcUNfIyGjjXUKFEIIISqpQuHmn3/+qfAOW7VqVelihOX4uuhLLcu2d+CxB2aycO073BF5kKU/zCLi7vrQZrgVKhRCCCEqp0J9btRqNSqViputqlKpMBgMVVacOUifmyLX+tzEpeVy/W/VvrCAz9a9S5+zeynUaMn6egVuI4ZZpU4hhBACTHv/rlDLTWRkZJUUJqoPjVrFzIFhPLX8ECooEXAKtHY8fd80Pv7tA+45+SdOI4dzOiGNJpOesFa5QgghRIVVauLMmkxabkracCyWWb+cKO5cDBDgpmfmwDAaeDoQdd/D9D6wESMqNk15h97vviR3TwkhhLA4U96/KxVuzpw5w/bt20lISMBoNJZ4bsaMGabuzqIk3JRmMCrsi0wmISMXXxc9nUI9iwNMTm4BRwaNoMvmHwD4cvgUBi54Ez/X0n12hBBCCHMxa7hZtGgRTz31FN7e3vj7+6NS/fspXqVScejQocpVbSESbipBUYh45AkarFoMwAf9nqT9R29wRxNfKxcmhBCitjBruKlXrx5PP/00L7300i0VaS0SbipJUUiZNAWPT+YC8F6PkRhffpnJvRtjpzF5uCQhhBDCJGYdxC8lJYUHH3yw0sWJGkqlwuOj9ymY+ToAU//8Bsc3XufhhXu4lCozigshhKg+TA43Dz74IJs2bTJHLaK6U6mwe30mvPceABP2rKbfsvcZ8NFONp+It3JxQgghRBGTRyhu2LAhr732Gnv37qVly5bY2dmVeP65556rsuJENTVlCuj1MGECT+z/CV1hAf/LeZLHezTgpX5NsdfKZSohhBDWY3Kfm9DQ0BvvTKXi/Pnzt1yUOUmfmyq0eDHKE0+gUhS+a3k30/pNoGVdTz4b0Y5gT0drVyeEEMKGmP1W8JpMwk0VW7ECRo8Gg4H1Le7guX6TcHDSM+f+VvRvGQCUf6u5EEIIURFVPkLxjVzLRf+9HVzUMo88UnSJ6uGHGXBsO54aIyN7P89TKw4xqms9OtTzYPbvp8ocJLBfiwArFi6EEMJWVapzxNdff03Lli1xcHDAwcGBVq1a8c0331SqgHnz5hEaGoper6d9+/b8+eef5a6/YsUKWrdujaOjIwEBATz22GMkJSVV6tiiitx/P6xdC/b2dDmyk993fIiuMJ+v90Tz3LeHSwQbgLi0XJ5afogNx2KtVLAQQghbZnK4mTt3Lk899RQDBgzgu+++Y/Xq1fTr14/x48fz4YcfmrSv1atXM2nSJF555RXCw8Pp0aMH/fv3JyYmpsz1d+3axahRoxg7dizHjx/n+++/Z//+/YwbN87UlyGq2r33wq+/goMDDffvZM9fH+JYkFvmqteug8765QQGY626KiqEEMICKtWheNasWYwaNarE8q+++orXX3/dpEk2O3fuTLt27Zg/f37xsmbNmjF48GBmz55dav3333+f+fPnExERUbzs008/Zc6cOVy4cKFCx5Q+N2a2Y0dR0MnMZF9QGI8/8DqZuht3Ll71RBe6NvCyYIFCCCFqIrMO4hcbG0u3bt1KLe/WrRuxsRW/zJCfn8/Bgwfp06dPieV9+vRh9+7dZW7TrVs3Ll68yPr161EUhfj4eH744QfuueeeGx4nLy+P9PT0Eg9hRj17wubNFDi70uniCZavfhXX3Mwbrp6QUXbrjhBCCFFZJoebhg0b8t1335Vavnr1aho1alTh/SQmJmIwGPDz8yux3M/Pj7i4uDK36datGytWrOChhx7C3t4ef39/3N3d+fTTT294nNmzZ+Pm5lb8CA4OrnCNopK6dOHk8rUkO7jSJvYMq1a9jGd2Wpmr+rrIBJxCCCGqlsnhZtasWcyYMYN+/frx5ptv8tZbb9GvXz9mzZrFG2+8YXIB199ppSjKDe++OnHiBM899xwzZszg4MGDbNiwgcjISMaPH3/D/U+fPp20tLTiR0UvX4lb03xgLyY88QGJju40TzjPtyun45OZXGIdNwc7OoV6WqlCIYQQtsrkcHP//ffz999/4+3tzU8//cSaNWvw9vZm3759DBkypML78fb2RqPRlGqlSUhIKNWac83s2bPp3r07U6dOpVWrVvTt25d58+axZMmSG14S0+l0uLq6lngI89OoVYx84h4eGvF/xDp70Tgphu9WvkSzhH8HeUzLKeCNX45TYDBasVIhhBC2plLj3LRv357ly5ff0oHt7e1p3749mzdvLhGKNm/ezH333VfmNtnZ2Wi1JUvWaDTAv2PuiOqjX4sAmDiIZ90d+fiLKYSmxPLT15NZ0HccEcPHsu5YPF/tieZ0fAafj2iHl7PO2iULIYSwARW6Wyo9Pb24xeNmHXJNaRlZvXo1I0eOZMGCBXTt2pUvvviCRYsWcfz4cerVq8f06dO5dOkSX3/9NQDLli3jiSee4JNPPqFv377ExsYyadIk1Go1f//9d4WOKXdLWZ7BqHDowBmCpk4gYOfmooV9+rB9+hye2RpLVr6BQHcHvhjVnuZ13KxbrBBCiGqpyqdf0Gg0xMbG4uvri1qtLrNPzLW+MgaDwaRi582bx5w5c4iNjaVFixZ8+OGH3H777QCMGTOGqKgotm/fXrz+p59+yoIFC4iMjMTd3Z0777yTd999l8DAwAodT8KNFSkKLFgAkydDbi54e3N57ueMiPMhKikbvZ2a9x5ozcDWdaxdqRBCiGqmysPNjh076N69O1qtlh07dpS7bs+ePU2r1sIk3FQDJ0/C8OFw5AgAeU88yTNtR/BHdAYAT93RgCl9msj8U0IIIYrJxJnlkHBTTeTlwcsvw9y5ACjNmrHk6bd586I9AHc08eHjh9vi5mBnzSqFEEJUE2YdxG/Dhg3s2rWr+OfPP/+cNm3aMGLECFJSUkyvVtROOh188AFs3Aj+/qhOnmTsCw/zS+F+9BrYfvoKQz7/i3MJGdauVAghRA1jcriZOnVqcafio0ePMnnyZAYMGMD58+eZPHlylRcobFyfPnD0KAwaBPn5tPxgFvv/mktLVRbnE7MY/Plu/jgRb+0qhRBC1CAmh5vIyEjCwsIA+PHHHxk4cCDvvPMO8+bN4/fff6/yAkUt4O0NP/0E8+eDgwMuO7by86JneCrtOJl5hTzxzQE+23pWbvcXQghRISaHG3t7e7KzswH4448/iueG8vT0lHmbROWpVDB+PBw8CK1bo05K5KUFL7H68Ffo8nN5f9MZnll5iKy8QmtXKoQQopozOdzcdtttTJ48mTfffJN9+/YVT1p55swZgoKCqrxAUcs0awZ//w0vvABA543f8/eaabRKPM/6o3HcP383F5KzrVykEEKI6szkcPPZZ5+h1Wr54YcfmD9/fvH4Mr///jv9+vWr8gJFLaTTwfvvw6ZNEBCAW9Q5fvpmChOP/MLp2DQGfbaL3ecSrV2lEEKIakpuBRfVW2IijB0L69YBEN60I/+7awLJrl68MqAZj3UPwajAvshkEjJy8XXR0ynUU8bIEUIIG2P2cW6MRiPnzp0jISEBo7HkpIfXRheuriTc1ECKAl98Ac8/Dzk5ZLq4M6n3BP5o1JkuoV5EJWUSl55XvHqAm56ZA8OK5rYSQghhE8wabvbu3cuIESOIjo4udfdKZaZfsDQJNzXYyZMwYgQcPgzA8jb9eevOseTa6Uusdq3NZv6j7STgCCGEjTDrIH7jx4+nQ4cOHDt2jOTkZFJSUoofycnJlS5aiJtq1gz27i3ubPzo4d/55avnCYs/X2K1a5F71i8nMBhr1VVXIYQQVKLlxsnJiSNHjtCwYUNz1WRW0nJjG058vQavZ57ALzOZfLWWOT1HsbjjYBRVyby+6okudG3gZaUqhRBCVBWzttx07tyZc+fOVbo4IarC2Vad6ffYp2xq1AV7YyGvblvCtyun0+7SyRLrJWTkWqlCIYQQ1qI1dYMJEybwwgsvEBcXR8uWLbGzKzmxYatWraqsOCFuxNdFT4qjG/8b8grDj2xkxpZFdL54nDXLp7KpURfe6zGSsz71+OHgRdoGe1DXy9HaJQshhLAQky9LqdWlG3tUKhWKokiHYmExBqPCbe9uJS4tFwUISL/CxL9W8eDRP9AoRoyoWNuiFx/e9ghxHv4M6xjMhDsbEuDmYO3ShRBCVIJZ75aKjo4u9/l69eqZsjuLk3BjOzYci+Wp5YeAfzsRN0i8wJQ/v6H/md0AFGq0fNOmP593HUa6mxePdK7L03c0xMdFZ6WqhRBCVIbZx7mpySTc2JYNx2KZ9csJYtP+7VsT4Kbng9B8ui2eC3/8AUCuzoEv2g1iUeehFDq7MqZ7CE/eXh93R3trlS6EEMIEZg8333zzDQsWLCAyMpI9e/ZQr149PvroI0JDQ7nvvvsqXbglSLixPQajcuMRirdsgenTYf9+ANIdXfmk8wN80/Ye7J2dGNsjlLG3heKityvnCEIIIazNrHdLzZ8/n8mTJzNgwABSU1OL+9i4u7vz0UcfVapgIW6FRq2iawMv7msTSNcGXiWnXrjrrqKJOH/8EZo1wzU7nVe3LWHXkvEM2Pcbn246RY8521iwI4LsfJlxXAghbIHJLTdhYWG88847DB48GBcXF44cOUL9+vU5duwYd9xxB4mJ1XtCQ2m5qcUKC+Gbb2DmTLhwAYAYn2Bmd3uE35t0x9tFzzO9GjC8U130dprizcptGRJCCGERZr0s5eDgwKlTp6hXr16JcHP27FlatWpFTk7OLRVvbhJuBLm5sGABvP120cScwKnAxrzd/VH+DGlLgLsDE+5sxIMdgthyMr7MPj0yd5UQQliWWS9LhYaGcvjq3D7/9fvvvxMWFmbq7oSwPL0eJk2CiAh4/XVwdqbppTN8890MfvjhNfxOHuHltUfpOnsL45cfKhFsAOLScnlq+SE2HIu1SvlCCCHKZ3K4mTp1Ks888wyrV69GURT27dvH22+/zcsvv8zUqVPNUaMQ5uHqWnSJ6vz5orBjb0+H84f56ZsXWLruHdyjyh6JW+auEkKI6q1Sd0stWrSIt956iwtX+y0EBgby+uuvM3bs2CovsKrJZSlxQzExRS05X30FRiMGlZo1ze/ko9tGcMnNt8xNZO4qIYT4lzn7KFpsnJvExESMRiO+vmX/4a+OJNyImzp5ksvPvkCdrb8DkKfRsqLNAL7oNJQ4V+8Sq378cBvuaxNojSqFEKJaudG4Y1XVR1EG8SuHhBtREXsikvi/WV8xdefX3BZ9BACDSs2O0Hasbt2HLQ06UajR0r6eBy/0aUzX+l6oVHIHlRCidro2Yvz1geLaX8X5j7a75YBj1nCTlJTEjBkz2LZtGwkJCRiNxhLPJycnm16xBUm4ERXx37mrukUd5tk9q+kac7T4+SuO7vzY8i5Wt+pDpGcgTf1deKx7CPe1CSxxG7kQQti6a38vr7/54hoV4O+mZ9dLd97SJSqzhpv+/fsTERHB2LFj8fPzK/VpdfTo0aZXbEESbkRFXT93VUjyJR76ZzMPHPsDn6zU4vX2123BypZ9+L1JNxzcXBjRuS4ju4Tg76a3TuFCCHEDVdEnJiuvkDPxGZyJz+BUXAb7IpM5fjkdtdFAg6SLtIo7h86Qz8o2/Utsd6t9FM0ablxcXNi1axetW7eudIH/NW/ePN577z1iY2Np3rw5H330ET169Ljh+nl5ebzxxhssX76cuLg4goKCeOWVV3j88ccrdDwJN8IUZV1DDnLW8onLJdr9sRbWr4errZcZeifWNruD1a37cDqgIf1bBvBY9xDa1fWwVvlCCFHM1D4xBQYjkYlZnI7L4HRcUZA5E59BTHI2KsVIaPJlWsadpVXcOVrGnaVFfASOBXkAxDl70uWZr0vs71b7KJry/q01dedNmzatsoH6Vq9ezaRJk5g3bx7du3dn4cKF9O/fnxMnTlC3bt0ytxk2bBjx8fEsXryYhg0bkpCQQGGhDJsvzKNfiwB6h/mX/Uln4uNw6RIsWwaLF+MSGcmo8N8YFf4bR/0asLpVH8b83ZPQRkE83j2E/i0CsNeWHH1BRj8WQljCjfrEXBu3663BLQhw13PqapA5HZfB+StZ5BuMoCjUTY2jVdxZHok7R6u4s7SMj8A5L7vUcTLtHTju14B//BuiNRRSqPk3Zvi6WK412+SWm/379zNt2jRmzJhBixYtsLMrOeGgKa0hnTt3pl27dsyfP794WbNmzRg8eDCzZ88utf6GDRt4+OGHOX/+PJ6enqaUXUxaboRZGI2wbRt8+SWsWQP5+QDkau35rUl3VrfuS1SzdozsGsLwznXxdtaZ/c4CIYSAm/eJKUFRCEpPoGVsUYtMm4RztIw7h3NOZul1HRygbVuM7dvzZpwjf7qGcN6zDkZ1yX6H1uhzY3LLjbu7O2lpadx5550lliuKgkqlKp5I82by8/M5ePAg06ZNK7G8T58+7N69u8xt1q1bR4cOHZgzZw7ffPMNTk5ODBo0iDfffBMHB4cyt8nLyyMvL6/45/T09ArVJ4RJ1OqiSTrvuguSkmD5cli0CP3x49x/fBv3H99GhGcg323pzcDWvQkJq8+e80mldnPtU1RV3FkghBDZ+YWs2BtTdrBRFPwzkopaYuLO0SnpPM0vn8U5M7X0ujodtGkDHTr8+2jaFLRa1EDnY7Esu9pH8b+uRZmZA8Ms2iptcrh55JFHsLe3Z+XKlWV2KK6oxMREDAYDfn5+JZb7+fkRFxdX5jbnz59n165d6PV61q5dS2JiIk8//TTJycksWbKkzG1mz57NrFmzKlWjEJXi5QUTJ8Jzz8G+ffDllyirVtEg+RLTty9jys5v2NKwE7pWfdgZ2q7EpxyFoj8Gs345Qe8wf7lEJUQtc6uXqlOz89kflcL+qGT+jkzm+KU0Co0KKsVIvZRYmiVE0iwhkuYJ52kVd7bEzRHF7OygVauSQaZ586LlN9CvRQDzH21XqjXa30qt0SZflnJ0dCQ8PJwmTZrc0oEvX75MYGAgu3fvpmvXrsXL3377bb755htOnTpVaps+ffrw559/EhcXh5ubGwBr1qzhgQceICsrq8zWm7JaboKDg+WylLCsjAz47juUL79EtXdv8eJYZy++b3k337XqzUV3/xKbyOjHQtQulblUHZuWw77IZPZHJbM/MoXT8Rk45WXT5Eo0YVciaZZwnpaJ0TSIj8SpoHTrTaFKzWmfEI76N6TTA72p3/8OaNmyqKWmEqrLCMUmt9x06NCBCxcu3HK48fb2RqPRlGqlSUhIKNWac01AQACBgYHFwQaK+ugoisLFixdp1KhRqW10Oh26Sv6ShKgyLi4wdiyqsWPZ+sMWIt/9lKHHthKQmcRze1bz3J7VnPQJYUf99uwIbc+BoGZ8uz8GTyd7Gvs5ywCBQti4m3X4nf9oO/o29ycyMau4VWZ/ZBJKZBRhV1tjnr8SSdOEKEJSy57UN1drzymfepzyCeWEbyj/BDTmpE8I+Xa64j4x3GIQ0ahV1eJDmcnhZsKECUycOJGpU6fSsmXLUh2KW7VqVaH92Nvb0759ezZv3syQIUOKl2/evJn77ruvzG26d+/O999/T2ZmJs7OzgCcOXMGtVpNUFCQqS9FCKtwaNuGN+96gnd7jqHP2T08dGQT3aOP0OxKFM2uRDH+7x/JtHdgd73WfB3ajhOtutG4c0t6NvGhe0Nv3Bxu3DQshKh5DEaFWb+cKBVs4N+Jeqct38vKlIvUiT5DsyuRPJwQyesJUbjml75jCYDAQGjduvjxp0MAY3alYlRrShzHWn1izM3ky1JqdemJxFUqlckdiqHoVvCRI0eyYMECunbtyhdffMGiRYs4fvw49erVY/r06Vy6dImvvy66Vz4zM5NmzZrRpUsXZs2aRWJiIuPGjaNnz54sWrSoQseUu6WEtf139ONr//k8stPoEXWYnpEHuf38IXyyU0tsE+EZxPb67fmzQXvyu95G1xZB9GziQ4s6bqjL+YMkt5oLUf3tiUhi+KKiy9UqxUhg+hUaJcbQLCGyuFUmJOUyGsVYalvF3h5VWFiJIEOrVuDtXWrdmn6HplkH8YuOji73+Xr16pmyO+bNm8ecOXOIjY2lRYsWfPjhh9x+++0AjBkzhqioKLZv3168/qlTp5gwYQJ//fUXXl5eDBs2jLfeeuuGd0tdT8KNqA6uH/34GhVFf9yWt7en27mDGH//HdWePaj+86EhV2vP3uCWbK/fnsPNu1CvS2t6NvGlRyMffFx0JY5Rk/+QCVFd3eqHBkVRiEvOJGLPEZIOHCHlwBFco87RKDGGBskXiwfCu16Wuxf6Dm3RtGnzb5Bp2rTcjr5VXbs1ycSZ5ZBwI6qLCoeP1FTYsgU2bKDwt/VoYy+X2E+Mmx/b63dgR/12pHXpTueW9dBrNczdfMask9gJURuZ+qFByckh4eBRYveGk3P4HzSnT+MVc47gxEvYG8segDZPoyXSI5CTvqElHp9O6l8t+rNYS5WHm3Xr1tG/f3/s7OxYt25duesOGjTItGotTMKNqE5M/hSlKHD8OGzYgPH3DfDnTtQFBcVP56u17A8OY3toUdg5410PruuMXFUDaglRXZmrdaK8ma8d83P4opMzTZMvkHroH4zHT+By/gw+V8q+nASQa6/nSlB98ho1YYPBnX9cAznrFUyMuz+G/wwRIf9ni1R5uFGr1cTFxeHr61tmn5vinZnY58YaJNwIm5KZWTQy8oYNGNavRxMVVeLpWGcvdtRvz+56rfnHvyHRHgEoqqL/wwsfbUdfab0RNsZcl2MNRoUes/9AuXSJkJRY6qVcpmHSBRolXaBB0gWC0q/ccNs0vRMXA0LJCm2EunkY7u1bEdS9A/r6IUUDgFL+pWqQ1laQy1LlknAjbJaiwLlzHF20isQf19E15ij6wvwSq6TbO3LCrz7H/BpwzL8hSY3DcG/bktb1vGgd7E7zOq442lf8JsqafP1e2J7yWlagggGhoIC8iEjSj50k+8RpDGcj0EZGYBd1Hs+4i+gMBTfc9IqTO2e96pJctz6FTZrh1KYlAV3b0bBlA/QV+H8l/eTKJ+GmHBJuhK27dueFriCPThePc8f5g7S7dIpmVyJLhR2AbDsdJ3yLAs9x/4ZkNm+FR/tWtAz1oXWQO439nNFqSrfYyh9iUZ3cbP4kFeDnpufbJ7qQnJRG5smz5J8+i+r8OXRRkbheisErLga/5Di0N7iMBFCg1nDBzY8Y9wDOeQVxziuYs951OecVTJqDCx882Ir72wff0uuQDwxlM1u4MRqNLFu2jDVr1hAVFYVKpSI0NJQHHniAkSNH1oiBxiTcCFtX1q3mAFpDIQ2SL9IiLoLOKZEMIQH14cNockqPk5GnseOkbyjH/Bpwuk4jclu1waNTW1rU96VNkDvHL6fx9Ipb/IQsai1zvIHvPpfIiC//Lv7ZOS+buqlx1E2NLb6MFJIaS92UOAIyElGXOapMkVytPdEeAST4BJFSpy5ZwSEk+ATyfZqeWFefEv1hricji5uPWcKNoigMHDiQ9evX07p1a5o2bYqiKJw8eZKjR48yaNAgfvrpp6qo36wk3IjaoMLX7w0GOHMGDh2CQ4fI/3s/qiOHscvMKLXPfLWWMz71OHq1heeYXwNO+oSQZ1dyBHDp/CjKcystfll5hVxIyebi5WSST58nKyKKwqhoNBcv4hB/Gf/0K9RJv0JAeuKNB7e7ti+9E0n+wWQE1iOvXihKwwbYN26EU/OmeDUKwdXRvsQH9ht9aLhG/t2bn1nCzdKlS5k4cSI///wzvXr1KvHc1q1bGTx4MJ999hmjRo2qfOUWIOFG1BaVfhMxGuH8eTh4EOXgQXL+PoD28CHs09NKrVqoUnPWuy4RnkFcdPfjopsfF64+hg7pRp/2IdTzckSnvfEn3fJIE711WONuI4DPR7SjXaALcaciSTkdQVZEFIboaLQXL+KYEItXSjwB6YmlBrm8kWQHV6I8AojyqEOMuz9RHnUYO/puWvZsXzTInYlXG6TTr3WZJdz06dOHO++8k2nTppX5/DvvvMOOHTvYuHGj6RVbkIQbUZtU2ZuUokB0NBw6xKlftxG3fQ8t4s/hnV068PxXvLMnF918SfYJJC8oGFX9+jg1boBXiyYEtWqCh4fzDbc1d58ecwenmrp/c533nLxC7n3zF5T4BLyyU/HKTsMvM5mA9CvUyUgsbnHxy0wqt8/LNfn2OjJ861BQJxBV3WB0oSF8fi6f03ZuXHL1IdbFm2z7fwd3raqWFelrZj1mCTf+/v5s2LCBNm3alPl8eHg4/fv3LzURZnUj4UaIW1M8VLyi4J+RRPOECEJSYglKiycoLZ7g1HiC0+LLnIH4vwwqNVdcvUj2qUNuUF0ICcGhcUM8mzfhuL0nT2yNLdW3oao+IZv7Daqm7r+idxsZjAqp2fmkJqeTcSGO7IuXyL8chyEuHhISUCdewT4pEYfUJJzTknHLSMEjK+2Gg9Zdr1CtIcXDhyzfAAoCg1HXDcahfghuTRrg1DAUgoPB07NUy4ulWlakRdE6zBJu7O3tiY6OJiCg7H8Yly9fJjQ0lLy8soeNri4k3AhxayrU98BVx65xrVFHR5F+4gwpJ8+SdzYCdXQ0jpdi8E6MRVfGnVv/VaDWEOvizUU3P5Id3UjVO5Pq4EKazplCd3fG3NsOBz8fdL4+OPj7YO/rDXr9TeuvktuFbWD/BqNCZl4hGbkFpGflk3klmRnLd2NITcclPxvnvGxc87LwzE7DKzsN7+xUfLLT8MlJwz0zBa+stJv2aylLur0jiU7uJDm6k+jkTqyLd1FLy9XWlv89cjv9e7cDTeUuZUrLiu0yS7jRaDTExcXh4+NT5vPx8fHUqVNHBvEToha45U/IikJ2zCVij5wi5fhpcs5GoIqKwuHSBbyuXKZOWkKFP+X/V67WngxHFzKdXMlxdiPH2Y08V3cK3NwxuHtgcHNnY2w+sRpHUvXOpDm4kK5zokCtpVCjoUCtxddVz0/PdMfRXoO9Vo1Oq6nwp/KK3I5c2UsjRqNCToGBOz/YTnx6HigKWqMBx4JcXPKycb4aSPzIY1CoM8b0dEhNQ5WRgSYjHU1WJvZZGdhnZ6HPycIxNwvnq9u55OeYVMt/FWi0pLt4kOnmSa67F/le3hh8fFH5+qLx90NXxx+HoADOqxx54vcY8rT25e6vKu42kpYV22SWcKNWq+nfvz86na7M5/Py8tiwYYOEGyFqCXN9Ql4bfokXVh3ENzOFoPR4AtMS8MjJwC03E/fcq19zMvDKy8Q1JwPXq89VpJ9GRRSoNRRotBSqteRrtFeDT9HDoNVSqLHDqNVi0P77VdHaYbSzI0+lIT7XSKFaS4Gm6AFgZyhEazRgZyxEazDgo1ejUwyoCwtRFxagNhQWfW8oRFNYgMZQePVhQGMoRHt1e62hEDujAa2x6GtVy1drydA5kqlzJNO+6GuioxtJju4kObqR5OTO7d3D6NS5Kc51A9EG+IObW4U65srdRuJWmfL+XeGhSEePHn3Tdar7nVJCiKrTr0UAvcP8q/wTsr+rHqNaQ5yrN3Gu3hwIal7meque6ELrBl4UGoxk5RaSlZRCbvwVchMSKbySiCExCWNSEiQno05JQZ2WSn5CIsakZNxyMnDPzcAjJ6PUiLN2RsPV4FC9L7H/V67Wngx7RzJ1DmTaO6J2c0Pr4YbR2QXF1RWVmxtqN1e0Hu7Yebih8/RA7+WOg5cH9p4e4OrK3sQCHv768E2Pdc8jXXCvRMuKRq1i5sAwnlp+CBVlt/jNHBgmwUZUiQqHm6VLl5qzDiFEDaRRq6p8wLJOoZ4EuOlv+gm/U6gnAFqNGjcne9yc/KCuX7n7Lu4M/R92hgK0hqJWlaIWlkLmP9iSVn6OFOTmUpCTT0FuLoU5+RTm5lKQm48hL4/Cq18NuXkY8/Ix5OVzJTmD/Wfjsb/WUmMourRWWNwapKFQraVTY198PV1Q2dujtrdDo7NDbW+PWmePxt4ejU6HVmePRmeHRqfDTm+PVqfjRGIOU38+QcHV/RRotOTY6SjQ2JV4TZW5tNPRWyHA7VSFz3tl9GsRwPxH25Vq8fOXPjGiilV8EhkhhLAAc37CLys4FWjsKNDYkcO/b+Ctb2+LRq1CCzjceHelGIwKr1fg0ssrlbz00smoYAjPIsEMAcRSLSvmavET4r9uPMW3EEJYybVP+P5uJe9+8nfT39LdRtfewOHfN+xrquINvKbv31zn/XrXWvzuaxNI1wZeEmxElZOJM4UQ1VZNG6jOVvYvdxuJ6khmBS+HhBshBNTcEYQttX8hqhuz3C0lhBC2xBydoW1p/0LUZLUu3FxrqEpPT7dyJUIIIYSoqGvv2xW54FTrwk1GRgYAwcHBVq5ECCGEEKbKyMjAzc2t3HVqXZ8bo9HI5cuXcXFxQWXidPei8tLT0wkODubChQvS18nC5Nxbj5x765Fzbz3mOveKopCRkUGdOnVQq8u/2bvWtdyo1WqCgoKsXUat5erqKn9orETOvfXIubceOffWY45zf7MWm2tknBshhBBC2BQJN0IIIYSwKRJuhEXodDpmzpx5w1nlhfnIubceOffWI+feeqrDua91HYqFEEIIYduk5UYIIYQQNkXCjRBCCCFsioQbIYQQQtgUCTdCCCGEsCkSbkSVmTdvHqGhoej1etq3b8+ff/5Z7vp5eXm88sor1KtXD51OR4MGDViyZImFqrUtpp77FStW0Lp1axwdHQkICOCxxx4jKSnJQtXajp07dzJw4EDq1KmDSqXip59+uuk2O3bsoH379uj1eurXr8+CBQvMX6iNMfW8r1mzht69e+Pj44Orqytdu3Zl48aNlinWxlTm3/w1f/31F1qtljZt2pitvmsk3IgqsXr1aiZNmsQrr7xCeHg4PXr0oH///sTExNxwm2HDhrFlyxYWL17M6dOnWbVqFU2bNrVg1bbB1HO/a9cuRo0axdixYzl+/Djff/89+/fvZ9y4cRauvObLysqidevWfPbZZxVaPzIykgEDBtCjRw/Cw8N5+eWXee655/jxxx/NXKltMfW879y5k969e7N+/XoOHjxIr169GDhwIOHh4Wau1PaYeu6vSUtLY9SoUdx1111mquw6ihBVoFOnTsr48eNLLGvatKkybdq0Mtf//fffFTc3NyUpKckS5dk0U8/9e++9p9SvX7/Esk8++UQJCgoyW421AaCsXbu23HVefPFFpWnTpiWWPfnkk0qXLl3MWJltq8h5L0tYWJgya9asqi+oFjHl3D/00EPKq6++qsycOVNp3bq1WetSFEWRlhtxy/Lz8zl48CB9+vQpsbxPnz7s3r27zG3WrVtHhw4dmDNnDoGBgTRu3JgpU6aQk5NjiZJtRmXOfbdu3bh48SLr169HURTi4+P54YcfuOeeeyxRcq22Z8+eUr+rvn37cuDAAQoKCqxUVe1jNBrJyMjA09PT2qXUCkuXLiUiIoKZM2da7Ji1buJMUfUSExMxGAz4+fmVWO7n50dcXFyZ25w/f55du3ah1+tZu3YtiYmJPP300yQnJ0u/GxNU5tx369aNFStW8NBDD5Gbm0thYSGDBg3i008/tUTJtVpcXFyZv6vCwkISExMJCAiwUmW1ywcffEBWVhbDhg2zdik27+zZs0ybNo0///wTrdZykUNabkSVUalUJX5WFKXUsmuMRiMqlYoVK1bQqVMnBgwYwNy5c1m2bJm03lSCKef+xIkTPPfcc8yYMYODBw+yYcMGIiMjGT9+vCVKrfXK+l2VtVyYx6pVq3j99ddZvXo1vr6+1i7HphkMBkaMGMGsWbNo3LixRY8tLTfilnl7e6PRaEq1FCQkJJT6lHpNQEAAgYGBJaavb9asGYqicPHiRRo1amTWmm1FZc797Nmz6d69O1OnTgWgVatWODk50aNHD9566y1pPTAjf3//Mn9XWq0WLy8vK1VVe6xevZqxY8fy/fffc/fdd1u7HJuXkZHBgQMHCA8P59lnnwWKPtgqioJWq2XTpk3ceeedZjm2tNyIW2Zvb0/79u3ZvHlzieWbN2+mW7duZW7TvXt3Ll++TGZmZvGyM2fOoFarCQoKMmu9tqQy5z47Oxu1uuR/fY1GA/zbiiDMo2vXrqV+V5s2baJDhw7Y2dlZqaraYdWqVYwZM4aVK1dK/zILcXV15ejRoxw+fLj4MX78eJo0acLhw4fp3Lmz+Q5u9i7Lolb49ttvFTs7O2Xx4sXKiRMnlEmTJilOTk5KVFSUoiiKMm3aNGXkyJHF62dkZChBQUHKAw88oBw/flzZsWOH0qhRI2XcuHHWegk1lqnnfunSpYpWq1XmzZunREREKLt27VI6dOigdOrUyVovocbKyMhQwsPDlfDwcAVQ5s6dq4SHhyvR0dGKopQ+9+fPn1ccHR2V559/Xjlx4oSyePFixc7OTvnhhx+s9RJqJFPP+8qVKxWtVqt8/vnnSmxsbPEjNTXVWi+hxjL13F/PUndLSbgRVebzzz9X6tWrp9jb2yvt2rVTduzYUfzc6NGjlZ49e5ZY/+TJk8rdd9+tODg4KEFBQcrkyZOV7OxsC1dtG0w995988okSFhamODg4KAEBAcojjzyiXLx40cJV13zbtm1TgFKP0aNHK4pS9rnfvn270rZtW8Xe3l4JCQlR5s+fb/nCazhTz3vPnj3LXV9UXGX+zf+XpcKNSlGkHVoIIYQQtkP63AghhBDCpki4EUIIIYRNkXAjhBBCCJsi4UYIIYQQNkXCjRBCCCFsioQbIYQQQtgUCTdCCCGEsCkSboQQQghhUyTcCCGEEMKmSLgRQgghhE2RcCOEEEIIm6K1dgGWZjQauXz5Mi4uLqhUKmuXI4QQQogKUBSFjIwM6tSpg1pdfttMrQs3ly9fJjg42NplCCGEEKISLly4QFBQULnr1Lpw4+LiAhSdHFdXVytXI4QQQoiKSE9PJzg4uPh9vDy1LtxcuxTl6uoq4UYIIYSoYSrSpUQ6FAshhBDCpki4EUIIIYRNkXBT1RTF2hUIIYQQtZqEm6py4QI89RQMG2btSoQQQohardZ1KDabggJYuLCo5ebcOWjY0NoVCSGEELWStNxUlfr1oX//ou/nz7duLUIIIUQtJuGmKj39dNHXJUsgO9u6tQghhBC1lISbqtSvH4SGQmoqfPuttasRQgghaiUJN1VJoynqVAzw+edy55QQQghhBRJuqtpjj4FOB4cOwd9/W7saIYQQotaRcFPVvL3h4YeLvp83z7q1CCGEELWQhBtzeOaZoq+rV8OVK9atRQghhKhlJNyYQ8eO0KED5OfD4sXWrkYIIYSoVSTcmMu11psFC8BgsG4tQgghRC0i4cZcHnoIPD0hOhrWr7d2NUIIIUStIeHGXBwc4PHHi77//HPr1iKEEELUIhJuzOmpp0Clgo0bi+abEkIIIYTZSbgxJ5lvSgghhLA4CTfmJvNNCSGEEBYl4cbcZL4pIYQQwqIk3JibzDclhBBCWJSEG0uQ+aaEEEIIi5FwYwky35QQQghhMRJuLEXmmxJCCCEsQsKNpch8U0IIIYRFSLipQrFpOeyOSCQ2LafsFWS+KSGEEMLsJNxUkdX7Y+j+f1sZsehvuv/fVlbvjym9ksw3JYQQQpidhJsqEJuWw/Q1RzFevcvbqMDLa46VbsGR+aaEEEIIs5NwUwUiE7OKg801BkUhKrGMEYllvikhhBDCrCTcVIFQbyfUqpLLVEA9L4fSK8t8U0IIIYRZSbipAgFuDswe2hKN6t+EowBrDl0qewOZb0oIIYQwGwk3VeShjnXZNa0Xq57owsS7GgHw/qYzfLMnqvTKMt+UEEIIYTYSbqpQgJsDXRt48Xzvxjx3NeDMWHecnw9f14Kj0cD48UXfy3xTQgghRJWScGMmz9/diDHdQlAUmPzdEbacjC+5wuOPy3xTQgghhBlIuDETlUrFjHvDGNo2EINR4ekVh9h7PunfFWS+KSGEEMIsJNyYkVqt4t0HWnF3Mz/yCo2M++oARy+m/bvCtY7FMt+UEEIIUWUk3JiZnUbNZyPa0qW+J5l5hYxeuo9zCZlFT3bqJPNNCSGEEFVMwo0F6O00fDm6I62C3EjOymfk4r+5mHL1FnCZb0oIIYSoUhJuLMRZp2XZY51o6OtMbFouIxfv40pGnsw3JYQQQlQxCTcW5OlkzzdjOxHo7kBkYhajl+wjDa3MNyWEEEJUIQk3Fhbg5sCKcZ3xdtZxIjadcV/tJ/fxJ2S+KSGEEKKKSLixghBvJ75+vBOuei37o1J4ck8qxr59i56U+aaEEEKIWyLhxkrC6riy9LGO6O3U7DhzhYUt+hU9IfNNCSGEELdEwo0Vta/nycKRHbDTqHhPFUqyb6DMNyWEEELcohoXbmbPnk3Hjh1xcXHB19eXwYMHc/r0aWuXVWk9G/vw0UNtQaNhYVjvooUy35QQQghRaTUu3OzYsYNnnnmGvXv3snnzZgoLC+nTpw9ZWVnWLq3S7mkVwDtDWvJdy97kaexkvikhhBDiFqgUpWY3EVy5cgVfX1927NjB7bffftP109PTcXNzIy0tDVdXVwtUWHELd0Tg9eyTPHBsC5H9hxK6/kdrlySEEEJUC6a8f9e4lpvrpaUVzdXk6elZ5vN5eXmkp6eXeFRXT/ZsQPa4/wFQZ9M6Nm47auWKhBBCiJqnRocbRVGYPHkyt912Gy1atChzndmzZ+Pm5lb8CA4OtnCVphn53INcbNAcnaGQf974gO2nE6xdkhBCCFGj1Ohw8+yzz/LPP/+watWqG64zffp00tLSih8XLlywYIWmU6lU1Hn5BQCGH/qdp7/ex4GoZCtXJYQQQtQcNTbcTJgwgXXr1rFt2zaCgoJuuJ5Op8PV1bXEo7pTD38YxdOToPQEup7ex2PL9nP8cpq1yxJCCCFqhBoXbhRF4dlnn2XNmjVs3bqV0NBQa5dU9RwcUF2db2rCyU1k5BYyesk+/j6fxO6IRGLTcqxcoBBCCFF91bi7pZ5++mlWrlzJzz//TJMmTYqXu7m54eDgcNPtq/PdUiVERECjRqAojH1lJVsK/61VrYLZQ1vyUMe6VixQCCGEsJxqebdUYWEhf/zxBwsXLiQjIwOAy5cvk5mZadJ+5s+fT1paGnfccQcBAQHFj9WrV5ujbOtp0AD6FU3J8O6Vv0o8ZVTg5TXHpAVHCCGEKIPWEgeJjo6mX79+xMTEkJeXR+/evXFxcWHOnDnk5uayYMGCCu+rhjU03ZpnnoHff8f92+Xox/Ui105f/JRBUYhKzCbA7eatVUIIIURtYpGWm4kTJ9KhQwdSUlJKXDoaMmQIW7ZssUQJNVO/fhAaijY9jftO7izxlFoFId6OVipMCCGEqL4sEm527drFq6++ir29fYnl9erV49KlS5YooWbSaGD8eABeityKmn9brYa0DZRWGyGEEKIMFgk3RqMRg8FQavnFixdxcXGxRAk11+OPg06H56lj7LvbhZFd6gHw59lEsvMLrVycEEIIUf1YJNz07t2bjz76qPhnlUpFZmYmM2fOZMCAAZYooeby9oaHHir69uvFvHpvM4I9HUjIyGPJrkgrFyeEEEJUPxa5Ffzy5cv06tULjUbD2bNn6dChA2fPnsXb25udO3fi6+tr7hKK1Zhbwf9r3z7o3Bns7eHiRX6+lM/Ebw/jrNOyY+odeDnrrF2hEEIIYVbV7lbwOnXqcPjwYaZOncqTTz5J27Zt+b//+z/Cw8MtGmxqrE6doEMHyM+HL79kYKs6tAx0IzOvkE+3nrN2dUIIIUS1UuMG8btVNbLlBuCrr2DMGHBxgX/+YbfBmRGL/karVvHH5J6EeDtZu0IhhBDCbKpdy83s2bNZsmRJqeVLlizh3XfftUQJNd+jj8Jtt0FGBoweTbcQD+5o4kOhUeG9jaetXZ0QQghRbVgk3CxcuJCmTZuWWt68eXOTBvCr1TSaotYbZ2fYuRM+/JBp/ZuiUsFvR2MJj0mxdoVCCCFEtWCRcBMXF0dAQECp5T4+PsTGxlqiBNtQvz58+GHR96+8QtMr0dzfrmhG9Nm/n6pdozcLIYQQN2CRcBMcHMxff/1Vavlff/1FnTp1LFGC7Rg7Fu69t6hz8ciRTL69Hjqtmn2RyWw5mWDt6oQQQgirs0i4GTduHJMmTWLp0qVER0cTHR3NkiVLeP7553niiScsUYLtUKlg0SLw8oIjR6jz0bs8flsoAO9uOEWhwWjlAoUQQgjrssjdUoqiMG3aND755BPy8/MB0Ov1vPTSS8yYMcPchy+hxt4tdb01a+D++0GtJnPzVm7blUdqdgH/N7QlD3eqa+3qhBBCiCplyvu3RW8Fz8zM5OTJkzg4ONCoUSN0OssPPmcz4QZg9Gj4+muoX5+v5//EjK0x+Lnq2DblDhztLTLhuxBCCGER1e5W8GucnZ3p2LEjLVq0sEqwsTmffAJ168L58zzy3ScEeTgQny7TMgghhKjdLBJusrKyeO211+jWrRsNGzakfv36JR6iktzcYNkyADSLv+R9x4sALNhxnqTMPCsWJoQQQliPRa5djBs3jh07djBy5EgCAgJQqVSWOGzt0KsXPP88fPghnd9+ke4Tv+SvtKJpGV4f1Nza1QkhhBAWZ5E+N+7u7vz22290797d3Ie6KZvqc3NNbi60bw8nTpDU917at34SrUYt0zIIIYSwGdWuz42Hhweenp6WOFTtpNfD8uWg1eK18VdeTj4g0zIIIYSotSwSbt58801mzJhBdna2JQ5XO7VtC6+/DsDY1R8SmJ4g0zIIIYSolSxyWapt27ZERESgKAohISHY2dmVeP7QoUPmLqGYTV6WuqawEHr0gL17Ode8I73veY2O9b1Z/b8u0s9JCCFEjWbK+7dFOhQPHjzYEocRWm3RuDdt2tDw+H6eqPMrX6gGsfVUAnc187N2dUIIIYRFWHQQv+rAplturpk/H55+mkI7e/qN+ghVWBi/T+yBVmPRYY2EEEKIKlPtOhQLCxs/Hvr1Q1uQzyfr5xIVm8IPBy9auyohhBDCIiwSbgwGA++//z6dOnXC398fT0/PEg9RxVQqWLwYPD0Jiz3HhL++5cM/zpCdX2jtyoQQQgizs0i4mTVrFnPnzmXYsGGkpaUxefJkhg4dilqt5vWrd/iIKlanTtHlKeCZvd9T5+QRmZZBCCFErWCRcLNixQoWLVrElClT0Gq1DB8+nC+//JIZM2awd+9eS5RQOw0bBiNGoFGMfPDbXL7afEKmZRBCCGHzLBJu4uLiaNmyJVA0eWZaWhoA9957L7/99pslSqi9PvsMJTCQ+imXmbBxEZ9uPWftioQQQgizski4CQoKIjY2FoCGDRuyadMmAPbv3y+zg5ubhweqq5Nrjgr/jeiVa4hKzLJuTUIIIYQZWSTcDBkyhC1btgAwceJEXnvtNRo1asSoUaN4/PHHLVFC7Xb33TBhAgD/99tHfL5mn5ULEkIIIczHKuPc7N27l927d9OwYUMGDRpk0WPXinFuypKdTV6rNugizvJL0x4EbfyZtnU9rF2VEEIIUSGmvH/LIH61yf79GLp0RWM08PHY13lu0QyZlkEIIUSNUC3Czbp16+jfvz92dnasW7eu3HUt2XpTq8MNkDHtFVzefYc0nRNHf/+T23q1tXZJQgghxE1Vi3CjVquJi4vD19cXtfrGXXtUKhUGg8EcJZSptocbCgqIbd6OgLPHONi4A62P7UFrZ5EpxoQQQohKqxbTLxiNRnx9fYu/v9HDksFGAHZ2OH+3klytPe3PHODIy+9YuyIhhBCiSpn9bqmCggJ69erFmTNnzH0oUUEubVpy6JlpADT/+B1yjh63ckVCCCFE1TF7uLGzs+PYsWPScbWaaT/nVfY3bIe+II/0B4dDQYG1SxJCCCGqhEXGuRk1ahSLFy+2xKFEBens7Uj+bAFpOif8Th8l+/U3rF2SEEIIUSUs0pM0Pz+fL7/8ks2bN9OhQwecnJxKPD937lxLlCGu07t3Bz54aDJTv34T/f/NhiH3QYcO1i5LCCGEuCUWCTfHjh2jXbt2AKX63sjlKutRq1V0f3UCv+7bzr2n/iTjweFk7t5LQICXtUsTQgghKs0i4Wbbtm2WOIyohG6NfLj/kal0fPc4flHn+KfrXexetpL77wizdmlCCCFEpVikz42ovmLTcjiUpWbCoBfJstPTPfoIjYffR/y5aGuXJoQQQlSKxUZv279/P99//z0xMTHk5+eXeG7NmjWWKkNcJzIxC0WBfcEteHj4bJZ9P5OWcefIuvtO2PYHhIZau0QhhBDCJBZpufn222/p3r07J06cYO3atRQUFHDixAm2bt2Km5ubSfvauXMnAwcOpE6dOqhUKn766SfzFF1LhHo7ob7a7eloQCMeePQ9Lrr64hR9ntzOXeGff6xboBBCCGEii4Sbd955hw8//JBff/0Ve3t7Pv74Y06ePMmwYcOoW7euSfvKysqidevWfPbZZ2aqtnYJcHNg9tCWaK527I72CuTJpz7mlHc99Ffiye7andSNW6xcpRBCCFFxFpkV3MnJiePHjxMSEoK3tzfbtm2jZcuWnDx5kjvvvJPY2NhK7VelUrF27VoGDx5c4W1q/dxSNxCblkNUYjYh3o54Otmz6OeDdJ70OB0vHidXa88/7y+k43Oj5e42IYQQVlEt5pb6L09PTzIyMgAIDAzk2LFjAKSmppKdnW2JEsRNBLg50LWBFwFuDui0Gp69vxOO2/5gb/Nu6Avzaf/8WL55YiZXMvKsXaoQQghRLrOGm8OHDwPQo0cPNm/eDMCwYcOYOHEiTzzxBMOHD+euu+4yZwnk5eWRnp5e4iEqpnlDf9od2MaxvkPRKEZGLX6TlUOf5ufwi1igwU8IIYSoFLOGm3bt2tG+fXuaNWvG8OHDAZg+fTpTpkwhPj6eoUOHmn1ahtmzZ+Pm5lb8CA4ONuvxbI293p4Wv//AlWcmATDxjyUk/u9Z/rdsPwnpudYtTgghhCiDWfvc7NmzhyVLlvDdd99RUFDA0KFDGTt2LL169aqS/Vekz01eXh55ef9eSklPTyc4OFj63FSC4YO5aKa8AMDasDt4c+gLvDqkDUPaBkpfHCGEEGZVbfrcdO3alUWLFhEXF8f8+fO5ePEid999Nw0aNODtt9/m4sWL5jw8ADqdDldX1xIPUTmaFybDN9+gaLUMObGdD1fM5JXlfzP2qwPEpUkrjhBCiOrBIh2KHRwcGD16NNu3b+fMmTMMHz6chQsXEhoayoABA0zaV2ZmJocPHy7uzxMZGcnhw4eJiYkxQ+WilEcfRbVuHYqjIz0jD7Fq9SscCj9H7w938N2BC9IXRwghhNVZ5Fbw62VmZrJixQpefvllUlNTMRgMFd52+/btZV7WGj16NMuWLbvp9nIreBXZuxfuuQeSk7ngV4+Hhs7ksqsvPRv7MHtoS+q4O1i7QiGEEDbElPdvi4abHTt2sGTJEn788Uc0Gg3Dhg1j7NixdOnSxVIlSLipSidPQt++cOECmT7+PDjkdU56BOGs0/LKPc14uGOw9MURQghRJapNnxuACxcu8Oabb9KgQQN69epFREQEn376KZcvX2bRokUWDTaiijVrBn/9Bc2a4Xwljl+/m87DhRfJzCtk+pqjjFqyj4spMo6REEIIyzJry03v3r3Ztm0bPj4+jBo1iscff5wmTZqY63AVIi03ZpCUBPfeC3v3ojg4sPH1T5mYXoe8QiNO9hqmD2hGryY+RCdnE+rtRICbXLISQghhmmpzWWrQoEGMHTuWe++9F41GY67DmETCjZlkZcGDD8Lvv4NGQ8LH83lG05z9USklVlOrYPbQljzU0bQ5xYQQQtRu1SbcVEcSbsyooADGjoVvvgHA+N57fNpmEB/+cbbEahqVil3TekkLjhBCiAqrVn1uRC1iZwfLlsELRQP9qadO5YHvPoXr8rNBUTgXn2mFAoUQQtQGEm5E1VKr4f33Yc4cAAIXfcb76z9Caygssdr/bThFbFqONSoUQghh4yTcCPOYOhWWLgWNhgeObeGLtW+jL8hFrQK9Vs3xy+nc88kudp1NtHalQgghbIyEG2E+Y8bA2rWg13NnxH72b/0/9t4fxKbne9K8jivJWfmMXPI3n2w5i9FYq7p+CSGEMCMJN8K8Bg6EP/4Ad3dcDh/At1tH6r77Oj8+2pLhnYJRFJi7+QyPf7WflKx8a1crhBDCBki4EebXvTscPFg0Fk5BAbz3HvoWYczOPcZ797dEp1Wz/fQV7v10F/9cTLV2tUIIIWo4CTfCMurXh19+KXo0aACxsfDIIzz4wqOsv8ONel6OXErN4YH5e1i+N1om4BRCCFFpEm6EZd17Lxw7Bm+/DQ4O8OefNOjbg83nf2BwPQfyDUZe/ekYk787QnZ+4c33J4QQQlxHBvET1hMTA1OmwPffA6B4e7PzsecZq2lFoaKiiZ8L8x9tR30fZysXKoQQwtpkED9RM9StC999B1u2QFgYqsREer73CofXz6BnWiSn4zMY9NlfrD8aa+1KhRBC1CASboT13XknHD4Mc+eCiwvO/4Tz1YIJLN61EF1yIk+vOMSbv56gwGC0dqVCCCFqAAk3onqws4Pnn4czZ2D0aADu+usX/lr6FKMP/sKynecY/sVe4tJyrVyoEEKI6k7Cjahe/P2L5qf66y9o2xZ9Vgaz/ljI719NRL3rT+799E92R8ioxkIIIW5Mwo2onrp1g/37YcEC8PSkcUIU362cxmsr3+aFD3/j823nZFRjIYQQZZJwI6ovjQaefLLoUtX48SgqFfed3MEfX4wnY9bbjF+yh7TsAmtXKYQQopqRW8FFzXHoEDz7LOzZA0CEZyDzBj/LY288hZezPZGJWYR6OxHg5mDlQoUQQlQ1U96/JdyImsVohOXLKZgyFbsrCQBsbtSFN+4cxwV3f9QqmD20JQ91rGvlQoUQQlQlGedG2C61GkaNwu7sGfImTMKg1tD77F7++PIpXt66mLpJl5i+5iixaTnWrlQIIYSVSMuNqNEOrd9FztPP0D36n+Jle+q25MQ9w+jywhOE1fdFpVJZsUIhhBBVQS5LlUPCjW2JTcuh++wt3HFuP4+Gr6dn5CE0StFgfyl6F7Z37EvB44/Tc2gv/Fz1Vq5WCCFEZUm4KYeEG9uzen8ML685hkFRCMy4wtsp+2m16Uc8k+KL1zkY2JRDfR4g4IlR3NW+Pg72GitWLIQQwlQSbsoh4cY2xablEJWYTYi3Y9HdUgYDWb+sJ/njz6mz8w80RgMA6faOrG91J/EPPkLnB3rTKcQTtVouWwkhRHUn4aYcEm5qobg4UuZ9gWrxYtwvxxQv/se/IRu73ovDyEe5p0dTQr2drFikEEKI8ki4KYeEm1rMaETZto3kj+bhtuEXtIVFAwBm2+n4penthPe9n5b39+XeVoG4OdpZuVghhBD/JeGmHBJuBACJiRQs+4rc+QtxOX+2ePEp73p837YfafcPo1+P5vRs4oOdRk1sWo4MEiiEEFYk4aYcEm5ECYoCf/1FzrwF2K35EW1e0azjeRo71jfpzvrO95LdtRu7zyejKMgggUIIYSUSbsoh4UbcUGoqrFxJzrwFOBw/Wrw4wjOQ1a368HuT7sWjIP8+sQdN/OXfjxBCWIqEm3JIuBE3pShw8CDGhQspXLEK+5ys4qdi3PzYFdKGXSFtSe96G23aNKRHI2/a1vXAXisDfgshhLku40u4KYeEG2GKuEtX+OiJNxlybBvtLp3E7uot5QBGVBz3q89fIW040LAddj170KV5MLc18qa+t5OMjCyEqF0UhZ83HGDFim3oCvL4q367Kr2ML+GmHBJuhKmuDRKoy8um68XjvKi9QP1//sbu+LES6+Vp7NgfFMZfIW0406Izvrd34bam/nRv6IW7o72VqhdCiCpUWAgxMRjPniP92EmyTp7BeO4c9tFRuF+OQZdf1G/xgpsfPcYvRqNSsWtaryppwZFwUw4JN6IySg0SCBAXB1u2oGz+g8KNm7CLu1xim1S9M7vrtmJXaFuSutxO466t6NHYl7Z13bHTqEvsW+7EEkJYyk3/5mRnw/nzRQHm+ClyTp1BOXcOfUwUrgmX0RoMpbe5yqBSE+vizXnPQEYNewNUKlY90YWuDbxuuW4JN+WQcCPMQlHgzBn44w8MGzehbNuGNjOjxCoX3PzYVa81Bxq2w3BHL9q2b0xGbgFzN5/BKHdiCSEsYPX+GKavOYpLdgahabFMbWhHi5wr5J46A+fP4xAThWtyQrn7yNPYEePuzwWPAFL8g8mtF4KqYSMMoaG8eTybfPW/44RJy42FSLgRFlFYCAcOwB9/kL9hE9q/96K+OmjgNcd96/NnSBv+CmnD/qAwcu30qFWwfcod1PWS0ZKFqK1uuTXXaES5fJmsc5FknYkg/3wUxqgolOhociOiqJOWgGt+drm7SNc5EeURwAWPAFIDgsmvF4q6YUOcmjfBt0l9QnxcqOOuR6speSPFf+f606hUvDO0hfS5sQQJN8IqMjPhzz9RNm8md8MmHE4eL/F0gVpDhGcQp3xDOOMbSnbT5ujbt6Fey0a0DHKnsZ+L3I0lRC1wrWWlrNbcvEIDSZn5JF9JIzMikvyISIzR0WgvXEB3+QLO8ZfxSIzFK/UKdobCmx4r3tmT6KstMGmB9SioF4qmUUNcmjchIDSQUB9nAtxKB5ibKfMyfhWQcFMOCTeiWoiPJ+WX3/njkxV0jzpMnYzEMldL0bsUB570xs1Qt26NT5d2hDXwl8AjhI3ILzQSl5bLPxdTeW7lQTyy0/HPSCQw/QqB6Qk0yUvBMykOv5R46qRfwSc79ab7LFSpiXPxJs7dl2Rvf9J9Akj3DWR7rgOXXH257OpDjn1Ra/GOqXcQ7Fn9W4sl3JRDwo2oTlbvj+HlH4/il55AsyvRPOeTQ8P48xgP/4NTVARqY+mOe0ZURHrW4YxvKMkNmmBs2Qr3zu0I7dCCxv6upQKPdFgWoupV9P+VoiikZhdwKSWbhJg40iOiyY65iCHmAqrYWOwT4nBNuYJfRjK+mcn4ZiWXGHLiRnLsHUjy9ifDtw45/oEUBAdDcF3s6ofi0CgU1/r18HJzRG+nKbGdOS8bmZuEm3JIuBHVzQ2bcHNz4eRJlCNHyNh3iLzwwziePI5TWnKZ+8mwd+CMbwgJIY3JD2uBU4e2nPIOYe6+OOmwLEQVuv7S0bQeQXSwzyUjIobc6BgMFy+hjo1FdyUOl+Qr+GQk4ZeZjL4wv0L7N6IiycmtuIWlWZcWuDRugEPD+jg2DEUVEgIeHlDJsbTMddnI3CTclEPCjajx4uNRjhwhZe9Bsg4cwu74MbxiIrC7rsPyNRfc/DjnFVT8hzKsS0s8mjXEpXEDfJuE4uvhhFotAw4K23IrLZa5+YUkX04gI/oSWZfiyLsUR2FcHErCFYzx8WReiMUrOxXfzBR8M5Nwyc+p8L4znd3I9vIl39cfAgOxDw7CMTQYp5BgVIGBrEtQmLoznjy1psa1rJibhJtySLgRNqmgAOX0aRJ37yf170Oojh7F9exJfFPLv6WzUKUm3sWLRE8/0n3rkBcQhFK3LtrQEJwb18ezWQP8A31x0mlvuA+57CWqm+tbVt4Y1Jy7ghxJvxBL1oVL5F2OoyAuAWN8AuorCdgnJ6JPTcYpLRm3jBTcs9OxN968Q+5/ZekcSfPwIdvLlwL/AFSBddAFB+EUWhe3hvXQ1Q2GgADQ62+6r5rasmJuEm7KIeFG1BaxaTn0f30dTeIjqZcSS2B6AoHpV2hhSMP9ymW8UhIqdEdFms6JOA8/Urz8yfYPpDAoGHVIPfQNQvhH7c4HR9MwoJbLXsIklQnFBYUG0pLSyIi9Qnb8FXLjr5B/JYnCxGSMycmQkowxOYX0y1dwz83AIycdz+w0vLPTKnxJ6L8ydY6kuXiQ7eZJrocX+Z7e5Hl4sjlRIcnRjQRnT+KdvUhy9mDjzHsliJhZrQg38+bN47333iM2NpbmzZvz0Ucf0aNHj5tuJ+FG1Cbldh40Gim8dJmUUxGkn44gN+I8hugY7C5ewCnuEh5JcbhkZ5R/ACBfrSXZ0ZUUB1dSHVwwenhS6OGJ0cMTxcsLjY8Xdj4+6P19cPT3xSXQD/cgfxwd7Cs0/5a0DFmHuc57QX4Bq7edYN66wzjmZeOel8ngunoa2hViSEqG5GRUqalo0lKwS09Dn5GGY1YGztkZuOZkmNyi8l+5djrSnD3IdPMk18OTfE8fFB9vVL6+aP390NfxxymoDi716uAc6I/KoezXXZM75dZkNh9uVq9ezciRI5k3bx7du3dn4cKFfPnll5w4cYK6dcv/BybhRtQ2t9TEnZFB5tkIUk5GkHXuPAXno1BfuIAu9iIu8ZfxSr2CVjFWqq40vTMZjq5kubiR6+JOvrsHhmuByMsLO19vThbYs+pcJpl2DuTZ6XhuYGsevL0JGgd9pTtT/pe5g1NN3f9/L+vYKQbeujuEu4McyU1OJTc5jfzUdPJT0yhMS8OQnomSno6SkYEqMwN1VhbqzEy02ZnYZ2dhn5uDLjcLh9xsHPNycCjMu+X6CtQaMh1cyHJyJcfZlXwXNwrd3DC6e5Dn7MbmuHzS9M6kOLiQ6OhOipMbq18dRECgTxWcnSJy6cjybD7cdO7cmXbt2jF//vziZc2aNWPw4MHMnj273G0l3AhRNWLTcrj9nc34ZCThmZ1edAkgN4ORjZyxS0uBxCRUycnYpSajS0/FISMN56w0XHKzbvnYRlTk2unIsdeTf+2h01Og01Ooc6DQwQGD3gGjgyOKgwOKgwM4OoKTEyonJ9ROTpzNMLApKp0crQ6jWs2gdsF0auiDWqNFbadBpdGisdOi0mpQa7VFD3stGq0WlZ0GjUaLxs4OtZ0GjV3R81q7q9uo1WUPxtYhGKPBiKGwEGNhIcYCQ9H3BgNKQWHxcsVgLH6OQgNGQyGGQkPx98bCQvacucKP+6OxMxSiN+TTv4E7TT3sMebkYszJgZwclNxclNxcyMlFlZeHKq/oqzovF3VeHpr8fx/agnzsrn7V5OehK8xHf/VhDgVqDZn2jqQ6OJOmd0Zx8wAPdwrdPcDDA5WnBxpPT+x8vNH7euPg641zHR+c/X3RuDiXG26lZcU22XS4yc/Px9HRke+//54hQ4YUL584cSKHDx9mx44dJdbPy8sjL+/fTwrp6ekEBwdLuBGiClTmTUTJzycnIZG0C3FkxcaTE5dAfvwVCq8koiQmoU5JRpuSjDYlBfv0VNxzM3AsyENfkHdLlyQsyYgKg1qNQV00xojaaESjFD1qqny1lmydA9k6R3L1juTrHcl3cKLA0QmDkzNGJyeMzs6oXFxQubqidnFB6+aK1t0Vew839O5u6DzdyLJz5N5lh8lVa4sDSlXOP3SNtKzYHlPCzY1vgaimEhMTMRgM+Pn5lVju5+dHXFxcqfVnz57NrFmzLFWeELXKQx3rcntjH5PeRFT29jgG1cExqE6568Wm5dD9/7Zi/M/HL3tjIb+Oa4+bkk9eWib5GZkUZGRiyMy++jULY2YWSlYWSnY2SlY2qpxsVNnZqHNzUOfkoMnJhuxsCjOzcCjIQ1+Yj1oxoDEasUNBoxhRG42oFSMaowG1seg59dXlFQkpahTURkOFBmO73rVgZFSpi78aVWqM6qsPlQaDSk2BSoWiUpOvsSNPa0eexh61ox6V3gGDvT0GnQ6jvR6jToei06Poi76i16PS61E56EHvgNpBj9rRAY2DA2pHB7JUGt7eGkWexo48rT2Z9g7k6BzYOr0PgR6OuJv8ikqbNUxdKhRXdQAJcHOQUFOL1bhwc831HREVRSmzc+L06dOZPHly8c/XWm6EEFXDXG8iAW4OzB7assSb4JsPtqVx46Bb3ndZwela64FvRV6LomAsLLpsZMgvwHD1ktK1S0vxyVmMXfI3KqMRFQoGlRpFrWbpuK74uTsWX+7SXLvcZVf0vUarQa1Wc7NJNWLTcrj9BvVXxe9idJPSLXKBHo63vN9rKhOKhTBFjQs33t7eaDSaUq00CQkJpVpzAHQ6HTqdzlLlCSGqkLneBMsKTia1HqhUqO20qO202DmUHrfEMxQmGh1L7b9Zm6rp93HL9d+EJcKHtKwIc6pxfW6gqENx+/btmTdvXvGysLAw7rvvPulQLISoMHP3y6jp+xeiOrHpPjcAkydPZuTIkXTo0IGuXbvyxRdfEBMTw/jx461dmhCiBjF360FN378QNVWNDDcPPfQQSUlJvPHGG8TGxtKiRQvWr19PvXr1rF2aEEIIIaysRl6WuhVyWUoIIYSoeWz+stStuJbl0tPTrVyJEEIIISrq2vt2Rdpkal24ycgomitHbgcXQgghap6MjAzc3NzKXafWXZYyGo1cvnwZFxeXCk3aJ6rGtfGFLly4IJcDLUzOvfXIubceOffWY65zrygKGRkZ1KlTB7W6/NGgal3LjVqtJijo1gcBE5Xj6uoqf2isRM699ci5tx4599ZjjnN/sxaba242EKYQQgghRI0i4UYIIYQQNkXCjbAInU7HzJkzZSoMK5Bzbz1y7q1Hzr31VIdzX+s6FAshhBDCtknLjRBCCCFsioQbIYQQQtgUCTdCCCGEsCkSboQQQghhUyTciCozb948QkND0ev1tG/fnj///LPc9fPy8njllVeoV68eOp2OBg0asGTJEgtVa1tMPfcrVqygdevWODo6EhAQwGOPPUZSUpKFqrUdO3fuZODAgdSpUweVSsVPP/1002127NhB+/bt0ev11K9fnwULFpi/UBtj6nlfs2YNvXv3xsfHB1dXV7p27crGjRstU6yNqcy/+Wv++usvtFotbdq0MVt910i4EVVi9erVTJo0iVdeeYXw8HB69OhB//79iYmJueE2w4YNY8uWLSxevJjTp0+zatUqmjZtasGqbYOp537Xrl2MGjWKsWPHcvz4cb7//nv279/PuHHjLFx5zZeVlUXr1q357LPPKrR+ZGQkAwYMoEePHoSHh/Pyyy/z3HPP8eOPP5q5Utti6nnfuXMnvXv3Zv369Rw8eJBevXoxcOBAwsPDzVyp7TH13F+TlpbGqFGjuOuuu8xU2XUUIapAp06dlPHjx5dY1rRpU2XatGllrv/7778rbm5uSlJSkiXKs2mmnvv33ntPqV+/folln3zyiRIUFGS2GmsDQFm7dm2567z44otK06ZNSyx78sknlS5dupixMttWkfNelrCwMGXWrFlVX1AtYsq5f+ihh5RXX31VmTlzptK6dWuz1qUoiiItN+KW5efnc/DgQfr06VNieZ8+fdi9e3eZ26xbt44OHTowZ84cAgMDady4MVOmTCEnJ8cSJduMypz7bt26cfHiRdavX4+iKMTHx/PDDz9wzz33WKLkWm3Pnj2lfld9+/blwIEDFBQUWKmq2sdoNJKRkYGnp6e1S6kVli5dSkREBDNnzrTYMWvdxJmi6iUmJmIwGPDz8yux3M/Pj7i4uDK3OX/+PLt27UKv17N27VoSExN5+umnSU5Oln43JqjMue/WrRsrVqzgoYceIjc3l8LCQgYNGsSnn35qiZJrtbi4uDJ/V4WFhSQmJhIQEGClymqXDz74gKysLIYNG2btUmze2bNnmTZtGn/++SdareUih7TciCqjUqlK/KwoSqll1xiNRlQqFStWrKBTp04MGDCAuXPnsmzZMmm9qQRTzv2JEyd47rnnmDFjBgcPHmTDhg1ERkYyfvx4S5Ra65X1uypruTCPVatW8frrr7N69Wp8fX2tXY5NMxgMjBgxglmzZtG4cWOLHltabsQt8/b2RqPRlGopSEhIKPUp9ZqAgAACAwNLTF/frFkzFEXh4sWLNGrUyKw124rKnPvZs2fTvXt3pk6dCkCrVq1wcnKiR48evPXWW9J6YEb+/v5l/q60Wi1eXl5Wqqr2WL16NWPHjuX777/n7rvvtnY5Ni8jI4MDBw4QHh7Os88+CxR9sFUUBa1Wy6ZNm7jzzjvNcmxpuRG3zN7envbt27N58+YSyzdv3ky3bt3K3KZ79+5cvnyZzMzM4mVnzpxBrVYTFBRk1nptSWXOfXZ2Nmp1yf/6Go0G+LcVQZhH165dS/2uNm3aRIcOHbCzs7NSVbXDqlWrGDNmDCtXrpT+ZRbi6urK0aNHOXz4cPFj/PjxNGnShMOHD9O5c2fzHdzsXZZFrfDtt98qdnZ2yuLFi5UTJ04okyZNUpycnJSoqChFURRl2rRpysiRI4vXz8jIUIKCgpQHHnhAOX78uLJjxw6lUaNGyrhx46z1EmosU8/90qVLFa1Wq8ybN0+JiIhQdu3apXTo0EHp1KmTtV5CjZWRkaGEh4cr4eHhCqDMnTtXCQ8PV6KjoxVFKX3uz58/rzg6OirPP/+8cuLECWXx4sWKnZ2d8sMPP1jrJdRIpp73lStXKlqtVvn888+V2NjY4kdqaqq1XkKNZeq5v56l7paScCOqzOeff67Uq1dPsbe3V9q1a6fs2LGj+LnRo0crPXv2LLH+yZMnlbvvvltxcHBQgoKClMmTJyvZ2dkWrto2mHruP/nkEyUsLExxcHBQAgIClEceeUS5ePGihauu+bZt26YApR6jR49WFKXsc799+3albdu2ir29vRISEqLMnz/f8oXXcKae9549e5a7vqi4yvyb/y9LhRuVokg7tBBCCCFsh/S5EUIIIYRNkXAjhBBCCJsi4UYIIYQQNkXCjRBCCCFsioQbIYQQQtgUCTdCCCGEsCkSboQQQghhUyTcCCGEEMKmSLgRQgghhE2RcCOEEEIImyLhRgghhBA2RcKNEMImrF+/nj59+uDm5oaXlxcDBw4kMjISgNmzZ6NSqQgPD7dylUIIS5CJM4UQNZqiKDz99NMsWLCAgIAAevTowfHjxzl+/DidO3dm27ZthISE0KVLF37++WdrlyuEsACttQsQQohb8cYbb7BgwQJ69erFL7/8gpOTE4WFhXTs2JG///6bd999l4SEBGbMmGHtUoUQFiItN0KIGisuLo6QkBBUKhUnT54kJCSk+Llp06bx7rvvotfrufvuu/nll1+sV6gQwqKkz40QosZavnw5eXl5PPbYYyWCDYC7uzsAubm50mojRC0j4UYIUWNt3rwZgMGDB99wnf79+9OxY0cLVSSEqA4k3AghaqxDhw4B0K1bt1LPpaenA/Diiy9atCYhhPVJnxshRI2Ul5eHXq/HxcWlOMhck5ycTMOGDUlJSeHs2bM0bNjQSlUKIaxBWm6EEDVadnY2+fn5JZa9+uqrpKSkAKDRaKxRlhDCiiTcCCFqJJ1OR/369TEYDCxevLh4+XfffceCBQuwt7cHKB7ITwhRe0i4EULUWM8++2zx1/79+9O7d28eeughmjRpwnvvvQfA6NGjmTJlijXLFEJYmAziJ4SosSZNmoSiKCxcuJCtW7fi4ODA/fffz8KFC3F2dubAgQN8//33HDlyxNqlCiEsSDoUCyGEEMKmyGUpIYQQQtgUCTdCCCGEsCkSboQQQghhUyTcCCGEEMKmSLgRQgghhE2RcCOEEEIImyLhRgghhBA2RcKNEEIIIWyKhBshhBBC2BQJN0IIIYSwKRJuhBBCCGFTJNwIIYQQwqZIuBFCCCGETfl/CBEcS+PognMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Alpha Energy Exact Energy Variance Exact Variance\n", + "0 0.45 1.180614 1.285193 2.365134 2.803442\n", + "1 0.50 1.102708 1.062500 1.897733 1.757812\n", + "2 0.55 0.894354 0.902071 1.098958 1.127465\n", + "3 0.60 0.803621 0.784444 0.810480 0.730706\n", + "4 0.65 0.704845 0.697341 0.474894 0.472569\n", + "5 0.70 0.641836 0.632704 0.314429 0.300629\n", + "6 0.75 0.588947 0.585069 0.195473 0.184613\n", + "7 0.80 0.554685 0.550625 0.108195 0.106376\n", + "8 0.85 0.529034 0.526646 0.056878 0.054712\n", + "9 0.90 0.509911 0.511142 0.022084 0.022532\n", + "10 0.95 0.503576 0.502633 0.005542 0.005280\n", + "11 1.00 0.500000 0.500000 0.000000 0.000000\n", + "12 1.05 0.502961 0.502382 0.004645 0.004776\n", + "13 1.10 0.510123 0.509112 0.017847 0.018389\n", + "14 1.15 0.519669 0.519661 0.040372 0.040095\n", + "15 1.20 0.536026 0.533611 0.070729 0.069482\n", + "16 1.25 0.548244 0.550625 0.107160 0.106376\n", + "17 1.30 0.572471 0.570429 0.158318 0.150778\n", + "18 1.35 0.601695 0.592799 0.195857 0.202822\n", + "19 1.40 0.622979 0.617551 0.258030 0.262739\n" + ] + } + ], "source": [ "#Here starts the main program with variable declarations\n", "MaxVariations = 20\n", @@ -718,9 +662,7 @@ { "cell_type": "markdown", "id": "a0b0cdd7", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "For $\\alpha=1$ we have the exact eigenpairs, as can be deduced from the\n", "table here. With $\\omega=1$, the exact energy is $1/2$ a.u. with zero\n", @@ -735,9 +677,7 @@ { "cell_type": "markdown", "id": "1faa89c7", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "H\\psi = \\mathrm{constant}\\times \\psi,\n", @@ -747,9 +687,7 @@ { "cell_type": "markdown", "id": "fe0ce30f", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "yields just a constant. The integral which defines various \n", "expectation values involving moments of the hamiltonian becomes then" @@ -758,9 +696,7 @@ { "cell_type": "markdown", "id": "51a2b471", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\langle H^n \\rangle =\n", @@ -774,9 +710,7 @@ { "cell_type": "markdown", "id": "0df2875c", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "**This gives an important information: the exact wave function leads to zero variance!**\n", "As we will see below, many practitioners perform a minimization on both the energy and the variance." @@ -785,9 +719,7 @@ { "cell_type": "markdown", "id": "9915b8ae", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Why Markov chains, Brownian motion and the Metropolis algorithm\n", "\n", @@ -813,9 +745,7 @@ { "cell_type": "markdown", "id": "0752750d", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Brownian motion and Markov processes\n", "A Markov process is a random walk with a selected probability for making a\n", @@ -837,9 +767,7 @@ { "cell_type": "markdown", "id": "8ac7e624", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Brownian motion and Markov processes, Ergodicity and Detailed balance\n", "\n", @@ -860,9 +788,7 @@ { "cell_type": "markdown", "id": "19638b7c", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Brownian motion and Markov processes, jargon\n", "\n", @@ -884,9 +810,7 @@ { "cell_type": "markdown", "id": "d2773988", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Brownian motion and Markov processes, sequence of ingredients\n", "\n", @@ -902,9 +826,7 @@ { "cell_type": "markdown", "id": "534f3ac3", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Applications: almost every field in science\n", "\n", @@ -924,9 +846,7 @@ { "cell_type": "markdown", "id": "afeb55e0", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\frac{\\partial V}{\\partial t}+\\frac{1}{2}\\sigma^{2}S^{2}\\frac{\\partial^{2} V}{\\partial S^{2}}+rS\\frac{\\partial V}{\\partial S}-rV=0.\n", @@ -936,9 +856,7 @@ { "cell_type": "markdown", "id": "60aed4de", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "The Black and Scholes equation is a partial differential equation, which describes the price\n", "of the option over time. It is a diffusion equation with a random term.\n", @@ -949,9 +867,7 @@ { "cell_type": "markdown", "id": "3c2e21c5", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Markov processes\n", "A Markov process allows in principle for a microscopic description of Brownian motion.\n", @@ -973,9 +889,7 @@ { "cell_type": "markdown", "id": "d27e5372", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Markov processes\n", "For the Markov process we have a transition probability from a position\n", @@ -985,9 +899,7 @@ { "cell_type": "markdown", "id": "56a62906", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "W_{ij}(\\epsilon)=W(il-jl,\\epsilon)=\\left\\{\\begin{array}{cc}\\frac{1}{2} & |i-j| = 1\\\\\n", @@ -998,9 +910,7 @@ { "cell_type": "markdown", "id": "fcfc2556", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "where $W_{ij}$ is normally called \n", "the transition probability and we can represent it, see below,\n", @@ -1014,9 +924,7 @@ { "cell_type": "markdown", "id": "d41153cb", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "w_i(t=\\epsilon) =\\sum_{j} W(j\\rightarrow i)w_j(t=0).\n", @@ -1026,9 +934,7 @@ { "cell_type": "markdown", "id": "67999f19", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "This equation represents the discretized time-development of an original \n", "PDF with equal probability of jumping left or right." @@ -1037,9 +943,7 @@ { "cell_type": "markdown", "id": "0303f5d2", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Markov processes, the probabilities\n", "\n", @@ -1050,9 +954,7 @@ { "cell_type": "markdown", "id": "20993a49", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\sum_i w_i(t) = 1,\n", @@ -1062,9 +964,7 @@ { "cell_type": "markdown", "id": "4224b1dc", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "and" ] @@ -1072,9 +972,7 @@ { "cell_type": "markdown", "id": "316dc936", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\sum_j W(j\\rightarrow i) = 1,\n", @@ -1084,9 +982,7 @@ { "cell_type": "markdown", "id": "a16c3643", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "which applies for all $j$-values.\n", "The further constraints are\n", @@ -1098,9 +994,7 @@ { "cell_type": "markdown", "id": "73e96509", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Markov processes\n", "The time development of our initial PDF can now be represented through the action of\n", @@ -1111,9 +1005,7 @@ { "cell_type": "markdown", "id": "ec6b839b", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "w_i(t_n) = \\sum_jW_{ij}(t_n)w_j(0),\n", @@ -1123,9 +1015,7 @@ { "cell_type": "markdown", "id": "8b156588", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "and defining" ] @@ -1133,9 +1023,7 @@ { "cell_type": "markdown", "id": "13109786", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "W(il-jl,n\\epsilon)=(W^n(\\epsilon))_{ij}\n", @@ -1145,9 +1033,7 @@ { "cell_type": "markdown", "id": "3602b37c", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "we obtain" ] @@ -1155,9 +1041,7 @@ { "cell_type": "markdown", "id": "4b87a404", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "w_i(n\\epsilon) = \\sum_j(W^n(\\epsilon))_{ij}w_j(0),\n", @@ -1167,9 +1051,7 @@ { "cell_type": "markdown", "id": "96dff053", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "or in matrix form" ] @@ -1177,9 +1059,7 @@ { "cell_type": "markdown", "id": "fae2135f", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "\n", "
\n", @@ -1194,9 +1074,7 @@ { "cell_type": "markdown", "id": "c91eb5ac", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## An Illustrative Example\n", "\n", @@ -1208,9 +1086,7 @@ { "cell_type": "markdown", "id": "fe8139d2", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\boldsymbol{W} = \\left(\\begin{array}{cccc} 1/4 & 1/9 & 3/8 & 1/3 \\\\ \n", @@ -1223,9 +1099,7 @@ { "cell_type": "markdown", "id": "899d577a", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "and we choose our initial state as" ] @@ -1233,9 +1107,7 @@ { "cell_type": "markdown", "id": "b9a0b9ef", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\boldsymbol{w}(t=0)= \\left(\\begin{array}{c} 1\\\\ \n", @@ -1248,9 +1120,7 @@ { "cell_type": "markdown", "id": "90e01a86", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## An Illustrative Example\n", "We note that both the vector and the matrix are properly normalized. Summing the vector elements gives one and\n", @@ -1262,9 +1132,7 @@ { "cell_type": "markdown", "id": "25d945a6", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\boldsymbol{w}(t=\\epsilon) = \\boldsymbol{W}\\boldsymbol{w}(t=0),\n", @@ -1274,9 +1142,7 @@ { "cell_type": "markdown", "id": "550e5d57", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "resulting in" ] @@ -1284,9 +1150,7 @@ { "cell_type": "markdown", "id": "2e51ec6d", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\boldsymbol{w}(t=\\epsilon)= \\left(\\begin{array}{c} 1/4\\\\ \n", @@ -1299,9 +1163,7 @@ { "cell_type": "markdown", "id": "720eeab1", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## An Illustrative Example, next step\n", "\n", @@ -1311,9 +1173,7 @@ { "cell_type": "markdown", "id": "508daab5", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\boldsymbol{w}(t=2\\epsilon) = \\boldsymbol{W}\\boldsymbol{w}(t=\\epsilon),\n", @@ -1323,9 +1183,7 @@ { "cell_type": "markdown", "id": "482347f0", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "resulting in" ] @@ -1333,9 +1191,7 @@ { "cell_type": "markdown", "id": "fab9aaca", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\boldsymbol{w}(t=2\\epsilon)= \\left(\\begin{array}{c} 0.201389\\\\\n", @@ -1348,9 +1204,7 @@ { "cell_type": "markdown", "id": "0a1ec98f", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "Note that the vector $\\boldsymbol{w}$ is always normalized to $1$." ] @@ -1358,9 +1212,7 @@ { "cell_type": "markdown", "id": "094ab7c3", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## An Illustrative Example, the steady state\n", "We find the steady state of the system by solving the set of equations" @@ -1369,9 +1221,7 @@ { "cell_type": "markdown", "id": "c1bb0432", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "w(t=\\infty) = Ww(t=\\infty),\n", @@ -1381,9 +1231,7 @@ { "cell_type": "markdown", "id": "3245c69b", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "which is an eigenvalue problem with eigenvalue equal to **one**!\n", "This set of equations reads" @@ -1392,9 +1240,7 @@ { "cell_type": "markdown", "id": "e7d3e060", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "W_{11}w_1(t=\\infty) +W_{12}w_2(t=\\infty) +W_{13}w_3(t=\\infty)+ W_{14}w_4(t=\\infty)=w_1(t=\\infty) \\nonumber\n", @@ -1404,9 +1250,7 @@ { "cell_type": "markdown", "id": "b7034c3b", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "W_{21}w_1(t=\\infty) + W_{22}w_2(t=\\infty) + W_{23}w_3(t=\\infty)+ W_{24}w_4(t=\\infty)=w_2(t=\\infty) \\nonumber\n", @@ -1416,9 +1260,7 @@ { "cell_type": "markdown", "id": "c6a4331e", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "W_{31}w_1(t=\\infty) + W_{32}w_2(t=\\infty) + W_{33}w_3(t=\\infty)+ W_{34}w_4(t=\\infty)=w_3(t=\\infty) \\nonumber\n", @@ -1428,9 +1270,7 @@ { "cell_type": "markdown", "id": "0aa09ce3", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "W_{41}w_1(t=\\infty) + W_{42}w_2(t=\\infty) + W_{43}w_3(t=\\infty)+ W_{44}w_4(t=\\infty)=w_4(t=\\infty) \\nonumber\n", @@ -1440,9 +1280,7 @@ { "cell_type": "markdown", "id": "367517c0", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "\n", "
\n", @@ -1457,9 +1295,7 @@ { "cell_type": "markdown", "id": "44dbb01e", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "with the constraint that" ] @@ -1467,9 +1303,7 @@ { "cell_type": "markdown", "id": "2ade0ce1", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\sum_i w_i(t=\\infty) = 1,\n", @@ -1479,9 +1313,7 @@ { "cell_type": "markdown", "id": "656a7f2f", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "yielding as solution" ] @@ -1489,9 +1321,7 @@ { "cell_type": "markdown", "id": "b67fc303", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\boldsymbol{w}(t=\\infty)= \\left(\\begin{array}{c}0.244318 \\\\ \n", @@ -1502,22 +1332,82 @@ { "cell_type": "markdown", "id": "f7f05092", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Code for the iterative process" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "id": "413e4029", - "metadata": { - "collapsed": false, - "editable": true - }, - "outputs": [], + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[0.25 0.1111 0.375 0.3333]\n", + " [0.5 0.2222 0. 0.3333]\n", + " [0. 0.1111 0.375 0. ]\n", + " [0.25 0.5556 0.25 0.3333]]\n", + "(-0.06304544821513006-0.2123618950858686j)\n", + "(-0.06304544821513006+0.2123618950858686j)\n", + "(0.30662882408582764+0j)\n", + "(0.9999620723444322+0j)\n", + "1 [0.25 0.5 0. 0.25]\n", + "2 [0.201375 0.2951125 0.032787 0.30583 ]\n", + "3 [0.19735901 0.26618664 0.04186846 0.30963331]\n", + "4 [0.19781454 0.26125473 0.04472607 0.30898906]\n", + "5 [0.19823737 0.26015554 0.04567556 0.3085067 ]\n", + "6 [0.19841624 0.25983997 0.04599655 0.30829557]\n", + "7 [0.1984759 0.2597293 0.04610463 0.30820565]\n", + "8 [0.19848908 0.25968133 0.04613983 0.30816112]\n", + "9 [0.19848541 0.259654 0.04615 0.30813271]\n", + "10 [0.19847579 0.25963365 0.04615155 0.30810992]\n", + "11 [0.19846411 0.25961569 0.04615013 0.30808908]\n", + "12 [0.19845172 0.25959856 0.0461477 0.3080689 ]\n", + "13 [0.19843908 0.2595817 0.04614491 0.30804896]\n", + "14 [0.19842636 0.25956495 0.04614201 0.3080291 ]\n", + "15 [0.19841361 0.25954823 0.04613906 0.30800926]\n", + "16 [0.19840085 0.25953153 0.0461361 0.30798944]\n", + "17 [0.19838808 0.25951483 0.04613314 0.30796963]\n", + "18 [0.19837532 0.25949813 0.04613017 0.30794981]\n", + "19 [0.19836256 0.25948143 0.0461272 0.30793 ]\n", + "20 [0.19834979 0.25946474 0.04612423 0.30791018]\n", + "21 [0.19833703 0.25944805 0.04612127 0.30789037]\n", + "22 [0.19832427 0.25943135 0.0461183 0.30787056]\n", + "23 [0.19831151 0.25941466 0.04611533 0.30785076]\n", + "24 [0.19829875 0.25939797 0.04611236 0.30783095]\n", + "25 [0.19828599 0.25938128 0.0461094 0.30781114]\n", + "26 [0.19827324 0.25936459 0.04610643 0.30779134]\n", + "27 [0.19826048 0.25934791 0.04610346 0.30777154]\n", + "28 [0.19824772 0.25933122 0.0461005 0.30775173]\n", + "29 [0.19823497 0.25931453 0.04609753 0.30773193]\n", + "30 [0.19822221 0.25929785 0.04609457 0.30771213]\n", + "31 [0.19820946 0.25928117 0.0460916 0.30769234]\n", + "32 [0.19819671 0.25926448 0.04608863 0.30767254]\n", + "33 [0.19818396 0.2592478 0.04608567 0.30765274]\n", + "34 [0.1981712 0.25923112 0.0460827 0.30763295]\n", + "35 [0.19815845 0.25921444 0.04607974 0.30761316]\n", + "36 [0.19814571 0.25919777 0.04607677 0.30759336]\n", + "37 [0.19813296 0.25918109 0.04607381 0.30757357]\n", + "38 [0.19812021 0.25916441 0.04607084 0.30755378]\n", + "39 [0.19810746 0.25914774 0.04606788 0.307534 ]\n", + "40 [0.19809472 0.25913107 0.04606492 0.30751421]\n", + "41 [0.19808197 0.25911439 0.04606195 0.30749442]\n", + "42 [0.19806923 0.25909772 0.04605899 0.30747464]\n", + "43 [0.19805648 0.25908105 0.04605603 0.30745486]\n", + "44 [0.19804374 0.25906438 0.04605306 0.30743508]\n", + "45 [0.198031 0.25904772 0.0460501 0.3074153 ]\n", + "46 [0.19801826 0.25903105 0.04604714 0.30739552]\n", + "47 [0.19800552 0.25901438 0.04604417 0.30737574]\n", + "48 [0.19799278 0.25899772 0.04604121 0.30735596]\n", + "49 [0.19798004 0.25898105 0.04603825 0.30733619]\n", + "50 [0.1979673 0.25896439 0.04603529 0.30731641]\n" + ] + } + ], "source": [ "from matplotlib import pyplot as plt\n", "import numpy as np\n", @@ -1525,7 +1415,7 @@ "# Define dimension of matrix and vectors\n", "Dim = 4\n", "#Setting up a transition probability matrix\n", - "TransitionMatrix = np.matrix('0.25 0.1111 0.375 0.3333; 0.5 0.2222 0.0 0.3333; 0.0 0.1111 0.375 0.0; 0.25 0.5556 0.25 0.3334')\n", + "TransitionMatrix = np.matrix('0.25 0.1111 0.375 0.3333; 0.5 0.2222 0.0 0.3333; 0.0 0.1111 0.375 0.0; 0.25 0.5556 0.25 0.3333')\n", "# Making a copy of the transition matrix\n", "W = TransitionMatrix\n", "print(W)\n", @@ -1545,7 +1435,7 @@ "\n", "\n", "count = 0\n", - "while count < 20:\n", + "while count < 50:\n", " for i in range(Dim):\n", " wnew[i] = W[i,:] @ wold\n", " count = count + 1\n", @@ -1556,9 +1446,7 @@ { "cell_type": "markdown", "id": "c8b4ab1d", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Small exercise\n", "\n", @@ -1569,9 +1457,7 @@ { "cell_type": "markdown", "id": "93afb638", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## What do the results mean?\n", "\n", @@ -1581,9 +1467,7 @@ { "cell_type": "markdown", "id": "9c66adeb", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\boldsymbol{w}(t) = \\boldsymbol{W}^t\\boldsymbol{w}(0),\n", @@ -1593,9 +1477,7 @@ { "cell_type": "markdown", "id": "4deac604", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "with $\\boldsymbol{w}(0)$ the distribution at $t=0$ and $\\boldsymbol{W}$ representing the \n", "transition probability matrix." @@ -1604,9 +1486,7 @@ { "cell_type": "markdown", "id": "fb09ebf3", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Understanding the basics\n", "\n", @@ -1617,9 +1497,7 @@ { "cell_type": "markdown", "id": "4207439b", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\boldsymbol{w}(0) = \\sum_i\\alpha_i\\boldsymbol{v}_i,\n", @@ -1629,9 +1507,7 @@ { "cell_type": "markdown", "id": "654b9cf0", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "resulting in" ] @@ -1639,9 +1515,7 @@ { "cell_type": "markdown", "id": "9774d42c", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\boldsymbol{w}(t) = \\boldsymbol{W}^t\\boldsymbol{w}(0)=\\boldsymbol{W}^t\\sum_i\\alpha_i\\boldsymbol{v}_i=\n", @@ -1652,9 +1526,7 @@ { "cell_type": "markdown", "id": "3222a11b", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "with $\\lambda_i$ the $i^{\\mathrm{th}}$ eigenvalue corresponding to \n", "the eigenvector $\\boldsymbol{v}_i$. \n", @@ -1667,9 +1539,7 @@ { "cell_type": "markdown", "id": "f84ca4d5", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Basics of the Metropolis Algorithm\n", "\n", @@ -1686,9 +1556,7 @@ { "cell_type": "markdown", "id": "d636b6bb", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "W_{i\\rightarrow j}=A_{i\\rightarrow j}T_{i\\rightarrow j}\n", @@ -1698,9 +1566,7 @@ { "cell_type": "markdown", "id": "cef6b16f", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## The basic of the Metropolis Algorithm\n", "\n", @@ -1721,9 +1587,7 @@ { "cell_type": "markdown", "id": "354a0610", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## More on the Metropolis\n", "\n", @@ -1738,9 +1602,7 @@ { "cell_type": "markdown", "id": "23dd30a5", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "\n", "
\n", @@ -1759,9 +1621,7 @@ { "cell_type": "markdown", "id": "f3449aa5", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Metropolis algorithm, setting it up\n", "Since the probability of making some transition must be 1,\n", @@ -1771,9 +1631,7 @@ { "cell_type": "markdown", "id": "7d552ba6", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "\n", "
\n", @@ -1793,9 +1651,7 @@ { "cell_type": "markdown", "id": "d1a7c254", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Metropolis continues\n", "\n", @@ -1807,9 +1663,7 @@ { "cell_type": "markdown", "id": "8a8ccc44", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "\n", "
\n", @@ -1826,9 +1680,7 @@ { "cell_type": "markdown", "id": "21c3265d", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Detailed Balance\n", "\n", @@ -1841,9 +1693,7 @@ { "cell_type": "markdown", "id": "7078b31c", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "\n", "
\n", @@ -1860,9 +1710,7 @@ { "cell_type": "markdown", "id": "5d6a5ccc", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "This is the [detailed balance requirement](https://cims.nyu.edu/~holmes/teaching/asa19/handout_Lecture3_2019.pdf)" ] @@ -1870,9 +1718,7 @@ { "cell_type": "markdown", "id": "2ea82a09", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## More on Detailed Balance\n", "\n", @@ -1882,9 +1728,7 @@ { "cell_type": "markdown", "id": "eb9b0739", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "\n", "
\n", @@ -1901,9 +1745,7 @@ { "cell_type": "markdown", "id": "adeb7edd", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "Other choices are possible, but they all correspond to multilplying\n", "$A_{i\\rightarrow j}$ and $A_{j\\rightarrow i}$ by the same constant\n", @@ -1920,9 +1762,7 @@ { "cell_type": "markdown", "id": "56176ec1", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Dynamical Equation\n", "\n", @@ -1932,9 +1772,7 @@ { "cell_type": "markdown", "id": "bca23e81", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "\n", "
\n", @@ -1950,9 +1788,7 @@ { "cell_type": "markdown", "id": "8514d2e0", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "with the matrix $M$ given by" ] @@ -1960,9 +1796,7 @@ { "cell_type": "markdown", "id": "2b21c68d", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "\n", "
\n", @@ -1979,9 +1813,7 @@ { "cell_type": "markdown", "id": "6a88eddc", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "Summing over $i$ shows that $\\sum_i M_{ij} = 1$, and since\n", "$\\sum_k T_{i\\rightarrow k} = 1$, and $A_{i \\rightarrow k} \\leq 1$, the\n", @@ -1992,9 +1824,7 @@ { "cell_type": "markdown", "id": "8e995141", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Interpreting the Metropolis Algorithm\n", "\n", @@ -2012,9 +1842,7 @@ { "cell_type": "markdown", "id": "0e2d8998", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\begin{bmatrix}\n", @@ -2027,9 +1855,7 @@ { "cell_type": "markdown", "id": "1209fe58", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "with two zero eigenvalues, only one right eigenvector" ] @@ -2037,9 +1863,7 @@ { "cell_type": "markdown", "id": "021c8bbb", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\begin{bmatrix}\n", @@ -2052,9 +1876,7 @@ { "cell_type": "markdown", "id": "46207463", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "and only one left eigenvector $(0\\ 1)$." ] @@ -2062,9 +1884,7 @@ { "cell_type": "markdown", "id": "4ca7c7ef", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Gershgorin bounds and Metropolis\n", "\n", @@ -2075,9 +1895,7 @@ { "cell_type": "markdown", "id": "982ad5cf", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\sum_i \\psi^{\\rm max}_i M_{ij} = \\lambda_{\\rm max} \\psi^{\\rm max}_j\n", @@ -2088,9 +1906,7 @@ { "cell_type": "markdown", "id": "f219d0c3", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "\n", "
\n", @@ -2106,9 +1922,7 @@ { "cell_type": "markdown", "id": "e6609f13", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Normalizing the Eigenvectors\n", "\n", @@ -2123,9 +1937,7 @@ { "cell_type": "markdown", "id": "c52c084a", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\begin{eqnarray}\n", @@ -2139,9 +1951,7 @@ { "cell_type": "markdown", "id": "202f50db", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "where the equality from the maximum\n", "will occur only if the eigenvector takes the value 1 for all values of\n", @@ -2153,9 +1963,7 @@ { "cell_type": "markdown", "id": "62d25051", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## More Metropolis analysis\n", "\n", @@ -2189,9 +1997,7 @@ { "cell_type": "markdown", "id": "3ecca8e3", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Final Considerations I\n", "\n", @@ -2215,9 +2021,7 @@ { "cell_type": "markdown", "id": "d5e7f5e9", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Final Considerations II\n", "\n", @@ -2238,9 +2042,7 @@ { "cell_type": "markdown", "id": "62c3d753", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Final Considerations III\n", "\n", @@ -2253,9 +2055,7 @@ { "cell_type": "markdown", "id": "d98633ba", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## The system: two particles (fermions normally) in a harmonic oscillator trap in two dimensions\n", "\n", @@ -2265,9 +2065,7 @@ { "cell_type": "markdown", "id": "db87ca29", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\hat{H} = \\hat{H}_0 + \\hat{V},\n", @@ -2277,9 +2075,7 @@ { "cell_type": "markdown", "id": "d64d5565", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "where $\\hat{H}_0$ is the many-body HO Hamiltonian, and $\\hat{V}$ is the\n", "inter-electron Coulomb interactions. In dimensionless units," @@ -2288,9 +2084,7 @@ { "cell_type": "markdown", "id": "e9d6df49", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\hat{V}= \\sum_{i < j}^N \\frac{1}{r_{ij}},\n", @@ -2300,9 +2094,7 @@ { "cell_type": "markdown", "id": "d3f83ff4", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "with $r_{ij}=\\sqrt{\\mathbf{r}_i^2 - \\mathbf{r}_j^2}$." ] @@ -2310,9 +2102,7 @@ { "cell_type": "markdown", "id": "39433dea", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Separating the degrees of freedom\n", "\n", @@ -2322,9 +2112,7 @@ { "cell_type": "markdown", "id": "5e83ed07", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\hat{H}_r=-\\nabla^2_r + \\frac{1}{4}\\omega^2r^2+ \\frac{1}{r},\n", @@ -2334,9 +2122,7 @@ { "cell_type": "markdown", "id": "14e056f3", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "plus a standard Harmonic Oscillator problem for the center-of-mass motion.\n", "This system has analytical solutions in two and three dimensions ([M. Taut 1993 and 1994](https://journals.aps.org/pra/abstract/10.1103/PhysRevA.48.3561))." @@ -2345,9 +2131,7 @@ { "cell_type": "markdown", "id": "d70ec898", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## Variational Monte Carlo code (best seen with jupyter-notebook)\n", "We want to perform a Variational Monte Carlo calculation of the ground state of two electrons in a quantum dot well with different oscillator energies, assuming total spin $S=0$.\n", @@ -2357,9 +2141,7 @@ { "cell_type": "markdown", "id": "24dd8dbb", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "\n", "
\n", @@ -2377,9 +2159,7 @@ { "cell_type": "markdown", "id": "dc797c78", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "where the $\\alpha$s represent our variational parameters, two in this case.\n", "\n", @@ -2403,9 +2183,7 @@ { "cell_type": "markdown", "id": "9be00231", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\lim_{r_{12} \\rightarrow 0}E_L(R)= \\frac{1}{{\\cal R}_T(r_{12})}\\left(2\\frac{d^2}{dr_{ij}^2}+\\frac{4}{r_{ij}}\\frac{d}{dr_{ij}}+\\frac{2}{r_{ij}}-\\frac{l(l+1)}{r_{ij}^2}+2E \\right){\\cal R}_T(r_{12})\n", @@ -2416,9 +2194,7 @@ { "cell_type": "markdown", "id": "513c8f5c", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "Set $l=0$ and we have the so-called **cusp** condition" ] @@ -2426,9 +2202,7 @@ { "cell_type": "markdown", "id": "13975f54", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "\\frac{d {\\cal R}_T(r_{12})}{dr_{12}} = -\\frac{1}{2(l+1)} {\\cal R}_T(r_{12})\\qquad r_{12}\\to 0\n", @@ -2438,9 +2212,7 @@ { "cell_type": "markdown", "id": "03832e2c", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "The above results in" ] @@ -2448,9 +2220,7 @@ { "cell_type": "markdown", "id": "d1ca0b37", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "{\\cal R}_T \\propto \\exp{(r_{ij}/2)},\n", @@ -2460,9 +2230,7 @@ { "cell_type": "markdown", "id": "27d5151c", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "for anti-parallel spins and" ] @@ -2470,9 +2238,7 @@ { "cell_type": "markdown", "id": "0c321422", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "$$\n", "{\\cal R}_T \\propto \\exp{(r_{ij}/4)},\n", @@ -2482,9 +2248,7 @@ { "cell_type": "markdown", "id": "92961e64", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "for anti-parallel spins. \n", "This is the so-called cusp condition for the relative motion, resulting in a minimal requirement\n", @@ -2496,9 +2260,7 @@ { "cell_type": "markdown", "id": "5910b15d", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "## First code attempt for the two-electron case\n", "\n", @@ -2507,12 +2269,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 14, "id": "b9c29278", - "metadata": { - "collapsed": false, - "editable": true - }, + "metadata": {}, "outputs": [], "source": [ "# Common imports\n", @@ -2547,21 +2306,16 @@ { "cell_type": "markdown", "id": "e3eec721", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "Thereafter we set up the analytical expressions for the wave functions and the local energy" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 15, "id": "d5f43c44", - "metadata": { - "collapsed": false, - "editable": true - }, + "metadata": {}, "outputs": [], "source": [ "# 2-electron VMC for quantum dot system in two dimensions\n", @@ -2598,27 +2352,22 @@ { "cell_type": "markdown", "id": "afe1a752", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "The Monte Carlo sampling without importance sampling is set up here." ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 16, "id": "1eda1b57", - "metadata": { - "collapsed": false, - "editable": true - }, + "metadata": {}, "outputs": [], "source": [ "# The Monte Carlo sampling with the Metropolis algo\n", "def MonteCarloSampling():\n", "\n", - " NumberMCcycles= 10000\n", + " NumberMCcycles= 1000000\n", " StepSize = 1.0\n", " # positions\n", " PositionOld = np.zeros((NumberParticles,Dimension), np.double)\n", @@ -2673,22 +2422,36 @@ { "cell_type": "markdown", "id": "0b40241b", - "metadata": { - "editable": true - }, + "metadata": {}, "source": [ "And finally comes the main part with the plots as well." ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 17, "id": "36d99104", - "metadata": { - "collapsed": false, - "editable": true - }, - "outputs": [], + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/td/3yk470mj5p931p9dtkk0y6jw0000gn/T/ipykernel_78935/1086845008.py:14: MatplotlibDeprecationWarning: Calling gca() with keyword arguments was deprecated in Matplotlib 3.4. Starting two minor releases later, gca() will take no keyword arguments. The gca() function should only be used to get the current axes, or if no axes exist, create new axes with default keyword arguments. To create a new axes with non-default arguments, use plt.axes() or plt.subplot().\n", + " ax = fig.gca(projection='3d')\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAGOCAYAAABVFjAxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADnqUlEQVR4nOy9eXwkdZ3//+oj99G5Z5JJMjknySRz5JhMkhHxq4Liiri6yrKKx1dxR1fXBf2K4oWr4oU/BYGBZccv4oW6iNcXEQEZYcgwR7o79zm573R3jr6Pqt8f8VNTXanurqquTleP9Xw88mDIUV3dSder3tfrraFpmoaKioqKioqKotHG+wRUVFRUVFRUIqMKtoqKioqKSgKgCraKioqKikoCoAq2ioqKiopKAqAKtoqKioqKSgKgCraKioqKikoCoAq2ioqKiopKAqAKtoqKioqKSgKgCraKioqKikoCoAq2ioqKiopKAqAKtoqKioqKSgKgCraKioqKikoCoAq2ioqKiopKAqAKtoqKioqKSgKgCraKioqKikoCoAq2ioqKiopKAqAKtoqKioqKSgKgCraKioqKikoCoAq2ioqKiopKAqAKtoqKioqKSgKgCraKioqKikoCoAq2ioqKiopKAqAKtoqKioqKSgKgCraKioqKikoCoAq2ioqKiopKAqAKtoqKioqKSgKgCraKioqKikoCoAq2ioqKiopKAqAKtoqKioqKSgKgCraKioqKikoCoAq2ioqKiopKAqAKtoqKioqKSgKgCraKioqKikoCoAq2ioqKiopKAqAKtoqKioqKSgKgCraKioqKikoCoI/3Caj8fUHTNAKBADweD3Q6HfOh1ar3jioqKirhUAVbZdegaRo+nw9+vx8ej4f5vFarhV6vh16vVwVcRUVFJQQamqbpeJ+EytVPIBCAz+cDRVHQaDTwer3QarWgaRo0TYOiKNA0DY1GA41Gowq4ioqKCgdVsFViCk3T8Pv98Pv9AACNRgOLxYK5uTlkZ2cjNzcX6enp0Gg0zPcT8SZwBVyv1zPfr6KiovL3girYKjGDoigmqga2xfjy5cuYmprC3r174XA4sLm5Cb1ej9zcXOTm5iInJwdpaWm8Ak4icK1Wywg3EXFVwFVUVK52VMFWkR0isj6fjxFZt9sNs9kMv9+PQ4cOISUlBRqNBhRFYXNzEzabDTabDZubm0hOTt4h4Nxj8wl4UlISk0JXBVxFReVqQxVsFVkhjWX9/f0oKipCQUEBlpeX0d/fj71796KhoYGpYZN6NZtAIICNjQ1GwLe2tpCSksIIeG5uLlJSUoIej0/AuTVwVcBVVFQSHVWwVWSDRNWBQAAXLlxAaWkpNjY2sLi4iKamJuzdu5f5vlCCzcXv9+8Q8PT0dOTk5DACnpycDABM3VsVcBUVlasRVbBVoobMVvv9flAUBa1Wi+7ubni9XqSkpODIkSNIT09nvl+MYHPx+/1YX19nBNxutyMjIyNIwJOSkpjzIo/HFnCHw4HMzEykpaWpAq6iopIwqIKtEhUkBR4IBJjPzc/PY2BgAAUFBWhpadkxkhWNYHPx+XxBAk7EmAh4Tk5OkIDTNI2LFy+ivLwcBQUFAPjnwFUBV1FRURqqcYqKZIjwkqja7/djYGAAVqsVWVlZ2LNnD+/8tJximJSUhMLCQhQWFgIAvF4vI+ATExNwOp3IyspixDsnJwcAGGEmIu7xeODxeJgUelJSEiPgWq1WFXAVFZW4o0bYKqIhKXDSBa7VarGxsQGz2YyMjAwcOnQIfX19KCoqQnl5Oe/Pe71eAPKKNx8ej4eJvtfX1+F2u6HRaJCfn4+SkhLk5ORAp9Mx58U2ciHnpwq4ioqKElAjbBVRUBQFv9/PpMA1Gg0mJycxMTGBmpoaVFRUMKluJdwLpqSkYO/evUzDm9vtRk9PD/x+P4aHh+H1ehkDl5ycHBgMhh3RN03TcLvdALafL3cGXBVwFRWV3UAVbBVB8M1We71e9Pb2wul04tixY0y6GYBiBJtLamoqkpKSUFpaioKCArjdbiYCX1hYgN/vZwQ8NzcX2dnZOwScoihGwLVa7Y4auCrgKioqsUAVbJWIhLIX7e3tRV5eHrq6upjGLoJSBZtAbjrS0tKQlpaGkpIS0DQNl8vFCPjc3BwCgQAMBgMj4FlZWbwC7vF44Ha7VQFXUVGJGapgq4SFPVtNRGd0dBQzMzNoaGjAvn37eMVI6YLNh0ajQXp6OtLT07Fv3z7QNA2n08kI+OzsLCiK2iHgpLGOCHggEGBWiLJr4GwfdFXAVVRUxKIKtgovfLPVLpcLZrMZFEWhs7MTmZmZIX8+EQWbi0ajQUZGBjIyMlBaWgqapuFwOBgBn56eBgCm+zw3NxeZmZnQ67ffVmwB9/v9jFDz+aCrAq6iohIJVbBVdsCdrdZqtVhaWsLAwABKSkpQV1fHdFaH4moQbC4ajQaZmZnIzMxEWVkZaJrG1tYWM0Y2OTkJjUbDNLDl5uYiIyNjh4D7/X74fL4gAWf7oKurRFVUVPhQBVslCO5sNUVRGBwcxPLyMg4dOoQ9e/YIOo6SBVuuaFaj0SA7OxvZ2dkoLy8HRVHY2tqCzWbD2toaJiYmoNPpghaZpKenhxTwQCCAlZUVlJeXqwKuoqKyA1WwVQDwz1bb7XaYzWYkJSWhq6sraGtWJMIJNkVRWF1dRUZGRtAu7N0kFjcTWq0WBoMBBoMBFRUVQZvIlpeXMTY2xrtKlAi4z+fD+Pg4SkpK4PP5mGNyXdhUAVdR+ftEFWyVHSlwjUaD2dlZjIyMoKKiAtXV1aJFIpRgu1wumEwmuFwu+Hy+oFWaubm5SE1NleU5KQGtVsvUtysrKxEIBBgBX1xcxMjISNDzJ3vAuRG4z+cLsnJVBVxF5e8TVbD/ziFRNdtetL+/H+vr62hpaUF+fr6k4/IJNlmzuWfPHhw5cgQAGAGbn5/H8PAwUlNTgwScbOK6GmCnx4HgVaLz8/PY3NwEAAwNDQWtEmV3oZOufRKBcwWcdKGrqKhcfaiC/XcKd7Zaq9VifX0dZrMZWVlZOHHiRFRiyRZsiqIwMjKC+fl5NDY2Yu/evUzqPS8vD3l5eQCCN3FNT09jYGAAmZmZQSlkEn1eDeh0uqDnv7m5iUuXLiEpKQmzs7MYHBwMuUoUCBZwvgic3YWuoqKS+Fw9Vz8VwVAUBYfDAZPJhNbWVmi1Wly+fBmXL19GbW0t9u/fH/VFXqPRgKIoOJ1OmEwmAEBnZycyMjJC1o/1ej0KCgqYLVrsRR7j4+NwuVzMIo/c3FzGRlTKuSkRkt6uqakBsF3TJhE4uYEJtUoU4BdwrVa7owtdqc9fRUUlPKpg/x3BvqAHAgFYrVa43W4MDAzA7Xajvb0dBoNBlsfSaDRwOp145ZVXUFJSgvr6etG11uTkZBQVFaGoqAjA9iIPq9UKm82GoaEheL3eIBOT7OxswY+hxA527jklJSUF3cD4fD5micnk5CT6+/tDrhIlx+MTcHWVqIpKYqIK9t8J3MYyEpmeO3cOhYWFaGlpkS3dHAgEYLFYsLW1haNHjwoeBYtESkoKiouLUVxcHNJGlB19ZmVlJZwYhTvfpKSkoBsYr9fLCHioVaLsBjbgytge24VNFXAVlcRAFey/A9hRtVarBU3TGB8fBwDU1NRg//79sj0WSbV7vV7s2bNHNrHmwmcjGsqFjAh4RkaGosVIbNSfnJwc9BqzV4mOjY3B7XbvEHD2KlFAFXAVlURCFeyrGD57UafTCbPZzFywydpJOVhYWMDAwADKysqg0+ngcrlkO3YkQrmQ2Ww2WCwWTExMQK/XIycnB16vF16vl1kAoiSiOR++VaJEwLmrRNmbyIBgAfd4PMy+clXAVVSUgyrYVyl89qKLi4sYGBhAaWkpDhw4gD//+c+gKCrqxwoEAhgaGsLy8jKOHDmCoqIiTExMRH3caGC7kO3fvz/IxMRisWB8fBxzc3NBI2QpKSlxPWe56+qpqalBJQQpq0RpmobH42Gi95SUFOTl5TEjZOomMhWV3UMV7KsQ7mx1IBDA4OAgVldXGUEF5LEPtdvtMJlM0Ov1QW5opEtcKbBNTGw2G/bs2YO0tDRmCxcZoWILOHdl6G4QK/GTY5Xo0tISY69Kjkk2kamrRFVUYo8q2FcR7NlqYi+6tbUFk8mE1NRUnDhxIshJLBpRpWka8/PzGBoawv79+1FTUxPUoa30i7ZWq2VmoKurq+Hz+YKWeJAO7N2cAd/NzvVIq0RnZmZA03TQJjJyA5iUlBQUgbvdbuaY3E1kqoCrqMiHKthXCaSxjAiwRqPB9PQ0xsbGUFlZierq6h0XTtKAJha/34/BwUGsra3h6NGjKCws3PE9QqJ3JdWQk5KSUFhYyDwX0oHN18AVzQx4JOL1evCtErXb7UFGNoFAgFkMQ1aJkjlvIt4URakCrqISI1TBTnDYs7ZEAH0+H/r6+rC1tYW2tjbGCpOLlAibROwpKSno6uoK6f2t5G1dQuB2YLPrv0NDQ/D5fEz9Ny8vD1lZWVF7eivp9dJoNMjKykJWVhbTxHfhwgWkp6eHXSXKJ+AejwdutxtarXZHE5sq4CoqwlEFO4HhW9phs9lgNpthMBjQ1dUV1l5UTIRN0zSzECRUxM4m0QWbC7eBi1v/pSgqaIQsMzNTkhApVbxItFxQUIC9e/cKXiXK9kEnUwuBQCBojIy4sBEfdKW+Bioq8UYV7AQl1Gz11NQUDhw4gPLy8ogXPqGiShaC2Gw2wQtBlCzYctiuhpsBZ0ef5EPIGlGlvl4E0hcBRL9KlC3gfr+fEWpuCl0VcBWVK6iCnWDwzVa73W709vbC6/Xi+PHjyM7OFnQsrVYbMSW+sbEBs9mMtLQ0dHV1CR59iiTYLpcLOp0ubtu45BRH7gw4O/pcXV3F+Ph4kHiRVZqhjqVUwvUciF0lSgScG4H7/X74fL6QAq6uElX5e0YV7ASCb7Z6dXUVfX192LNnD1pbW0V1MocTVZqmMTMzg9HRUVRVVaGqqkqUmIQ6Nk3TmJiYYOa02XPABoPhqrgg80WfZIkHEa+UlJQdM+BKj7ApihL8NxBplejw8DDvayBEwNmLTK6GvxcVFaGogp0gEAtJElVTFIXh4WEsLCygsbERxcXFoo8ZqunM5/MxO7HDNa1FOjZXgLxeL3p7e+FwONDW1gatVht0ESde4Hl5eVHVgZWGVqsNEi+/3888bzIDnpGRgbS0NGaGPh4z4JGIpqufu0qU7zXgWyUaSsABfhc2VcBVrmZUwVY4JAVOusC1Wi0cDgfMZjO0Wi26uroYIwux8DWdkZ3YmZmZUe3E5gq2zWaDyWRCTk4OOjs7AWzfhGRkZDBGHqQObLVaMTk5yaRZiYCnpaVdFQKu1+uRn5/P9AKQGfCFhQX4fD689NJLO0bIlLAHXM4xPL7XQMgqUa6Ak01k5BgAmJE7VcBVrjbifxVQCQlFUfD7/UFd4MSspLy8HLW1tVFdkNgRNk3TmJqawvj4OGpqalBRURHVxZkINk3TmJycxMTERFAzHLm4sr+frw5stVqxvLyM0dFRJCcnM+KtBCtRuSAz4KQf4ejRo0wD28jICDweT0gP8N2E3XQmN0JXibIXmXAFfH5+HltbW2hoaACw/TfFjsBJF7qKSqKiCrYCIZGD0+lESkoKNBoNAoEABgYGYLFYQpqViIVE2F6vl5nbPnbsGHJycqI+NrkZ6OnpwdbWluhd2+w6MGliIiYe7DQyuwYqNApVagc7OSfuEg/2CBnxAOdaiO5GJCmmhh0tUlaJ0jTNCDPbn4DcHLIFnN2FrqKSKKiCrTBInc5iscBsNuN1r3sdNjc3gzq1Q5mViEWj0WBrawujo6PIzs7GiRMnZKudOp1O2O12pKWlyXJcnU63I4VKRGxiYgIul4u5gOfl5cUtCo0WPgHheoCHshCNdgY8EvF0pgu3SnR0dBQejwdJSUlITk6GxWIJWiVKzp0IuNfrZWbAuU1sqoCrKBlVsBUEd7Y6EAgwaerq6mpUVlbKdkFhb2+qr68XNLct9LjEEjUpKQnNzc0xuQhyIzC2E9nAwEBQFEqcyJR+MRYS9YeyEGXPgJPav5gZcKHnp5SaMN8q0eHhYea/4VaJAqEFXF0lqqJkVMFWAHyz1aR+PTMzI1uamuDxeNDb2wu3242Kigrs379fluOS7vKNjQ0cOHAAs7OzIS94cl8IuU5kJAq1Wq2YmZkBAObiHQgEFJkSB8S/LmwL0fLyct4Z8KSkpKDSgdQMjZK837mkpqYiLS0NmZmZqK6uFrxKFAjeBe71eoNc2FQBV1ESqmDHGb7ZaqvVCrPZDADo6uqSdcTHYrGgt7cXubm5yM/Pl61xa2NjAyaTCRkZGejq6sLW1lbcRJEvCiUNbKurq9jY2IDD4cDm5mbUIiYncrxe3Blwvvnn1NTUIAEXOgmgZMEGtgU3KSmJd5Wo0+lkeiDCrRIFVAFXUS6qYMcR7mw1TdMYGxvD9PQ0qqurMTo6Kts4DzEsmZycRF1dHcrKymA2m6MWCbbHONtgJVJj126vkszOzkZ2djYqKipgMpmQnp4OnU7HdN0rYRc2OVc54Zt/Zm/gIuNTbAeyUM99N5vOpEDeR1zYN3BsK1nyOvCtEg0l4B6PhxkjUwVcZbdRBTsO8M1Wu91umM1m+P1+dHR0ICUlBaOjo6AoKurmKWJd6vF40NHRgaysLADCrEnDwfYYb21tZUQBUG4nNnDFC7y0tBQAeHdhsxvYYrVKk8tuRLB6vZ53fIo077G7r4mAk+1bABRTw+YjlGBzYY8QhlolCiBIwDMzMxlRZu8C5wo4e5GJuolMRW5Uwd5l+FLgy8vL6O/vR3FxMerr66HT6eD3+wEgasFeW1tDb28vCgoK0NLSEhSxRyOqm5ubMJlMIT3GlSzYXLi7sEkHstVqxdDQELxe744GtlgIVzxeL27zHrv7mj0DTnoolPw7FSrYXPhWiZI+AL5lLjk5ObyrREkjJzkmEXB1laiKXKiCvYuQqJrdWDY0NITFxUU0NTUxHa/AlUhGagRMURTGx8cxPT2NhoYG7Nu3b8fFQso+bJqmMTc3h+Hh4bBrNhNJsLmwO5DZqzStVitmZ2dB03RQ+jwjI0O2C3G8L+jc506atywWCwDg3LlzMBgMjIGNkrrvpQo2F3YJZf/+/byNfKFWiaoCrhJLVMHeBchsNYmatVot7HY7zGYz9Ho9r70oeSNLEWySXvf5fOjs7ERmZibv94nZhw1sp8AHBwextrYWcc1mIgs2G75Vmna7HVarFRaLBRMTE4I3cUVCaa8Xu3mrsLAQq6uraG5uZsSLnTqOxc2LWOQSbC5SV4nyCfjMzAy2trZQU1PDu4lMFXCVcKiCHWPIrCdbeEmEun//ftTU1IRslJESAa+srDDbuxoaGsKm08Uc3263w2g0Ijk5WZB5i5IFO1rLVZI+JdEXdxMX6cLOy8tDTk6OKD92pV6wye8yKysLBoMhqPueROATExNBkedu+7/HSrC5SF0lCoAZ3yQZNo/HA7fbDa1Wu6OJTRVwFS6qYMcItjEDuZD4/X4MDAzAZrNFjFABcREwRVEYHR3F7OwsGhsbUVJSEvFniDlLJObn5zE4OBj2BoNLJMEmdfxE9wPn28TFbmBzOByMBzZpYAvV+a/UGxzgyrmxBYQvdcyOPIn/uxwz4ELYLcHmImaVqN/vZ9LjBBJ9BwIBBAKBkGNkqoCrqIIdA/gayzY2NmA2m5k5ZSFCJbSL2+l0wmw2g6IodHV1ISMjQ9B5RoqwA4EAhoaGsLy8LMm/PJQALS0toa+vD4FAAFlZWUw9dLe6scOdW7Rwu7CJB7bVag1q4iLPOTs7O+jirdQLMvk7CXd+fJEn3ww4ee5isw9CzlEJXezhVolaLBZ4vV6cO3cu4ipRtoDfcssteP/7349bbrklnk9NJc6ogi0zXHtRAMy2KrFbsIQI9vLyMvr6+oI6zIUSLoK32+0wmUxMjV1sXZbv2CQLMDc3h4MHDyIzMxMbGxtMN7bP52MamvLy8q6KfdhcD2yXywWr1coYeFAUxVy4yZifEpEychZuBnxqagp2u53JPhABj8Z3QCmCzYW9SjQQCDAd5+vr64JXiS4tLSlixapKfFH/AmSCz17U6/Wit7cXTqdT9LYqILxgUxSF4eFhLCwsoLGxEcXFxaLPOVTaenFxEf39/SgrK8OBAwckXwTZx+Y2wqWmpsLn8wV1JLPtRKempoLSzXl5eZKbuZREWloa9u3bF2TgQQTcarUCAPr7+xX3nOXwEefLPhABHx8fD1rgIiXjolTBZhMIBJgmPpKxCrdK1OFwoLS0FE6nU/Te+1OnTuHUqVOYmpoCADQ2NuJLX/oSbrjhhpA/c+bMGdxxxx0YGBhASUkJPvOZz+DkyZNB37O+vo7Pf/7z+PWvfw2bzYbKykp897vfxVve8hZxL4aKaFTBlgG+FPja2hr6+vqQn5+P5uZmSXfHoQTb4XAEWZeKfSOHOn4gEMDw8DCWlpZw5MgRZjZXCiQao2masVotKChAW1sbdDrdjto5106Ubx92SkoKE7FF40amlKidbeBRXl6O2dlZLC8vIyMjI+g5s29a5EwhiyEWpi7JyckhF7hw59/5ygdcEkGw+XwVwq0S/e53v4vf//73KCwsxE9+8hNoNBpcc801jPlROEpLS/HNb34TNTU1AIAf/ehHuOmmm2A0GtHY2Ljj+ycnJ/GWt7wFt912G37yk5/g7Nmz+NjHPobCwkK8853vZM7tuuuuQ1FREf7nf/4HpaWlmJ2dFXQ+KtGjCnaUcGeraZrG6OgoZmZmQs4/C4VPsBcXFzEwMIB9+/ahrq4uqgsUO8J2Op0wmUzQaDTo7OyUfBPAPjYAxg61vr4epaWlosoB7H3Y3GaueLmRxRKNRoPk5GRUVlbu2AE+MzPD7ABn14B3K026G7ak3AUu7D3gpHzA9f9mn1MiCDa7VBYKdhnlxz/+MaampnDDDTfA5XLhE5/4BKanp/Hxj38c3//+98Me58Ybbwz6/69//es4deoUzp07xyvYDz/8MMrLy5njNjQ04OLFi7j33nsZwf7hD38Iq9WKV155hblhlmt5kEpkVMGWCHu2mqQLXS4X0/wVbv5ZKGzBZke/hw4dYmqi0UCazpaWltDf3y/LTQCBzJzPz8/j+PHjyM7O3vE9Yuq13HQq141MbP1bibVi7jmF2gFutVoxNjYGt9u9o2kvVoK124s/+ObfHQ4HI+BTU1PQaDRBdV8lrf8MRSAQEH1juX//fqysrODb3/42Dhw4gJmZGWxubop+3F/96ldwOBzo7Ozk/Z7u7m5cf/31QZ9705vehNOnT8Pn8yEpKQm/+93v0NnZiX/7t3/Db3/7WxQWFuJf/uVfcOeddyb8DXMioAq2BMjqS3YKfGlpian71NXVyfLHSwSbmKxotVpJDWDh2NraQn9//w6ntWjY2NiA0WgEALS3t/Oeb7SCyXXkulrq3+FEkW8HOKl/kxWSbAGT04Us3mLILh+UlZUx7wubzYa1tTVMTEwAAMbGxpCfn8+MkCml/EGQItherxc+n48JAMrLywX/bF9fHzo7O+F2u5GZmYmnnnoKBw8e5P3epaWlHYHAnj174Pf7sba2huLiYly+fBkvvPAC3vOe9+Dpp5/G2NgY/u3f/g1+vx9f+tKXRD0vFfGogi0CMltts9lgMpnwmte8hhl9WllZkS3yJZBVmwMDAygvL0dtba1sF02n04mpqSn4fD6cOHEi6hQ4ELy5q7KyEuPj47uSshVb/45m4UksEXsTk5qaipKSEmaFJF8Eyr1pkSpgSlutqdVqg2bAPR4Pzp49i7S0NMa8hF3/z83NVcTMv5TdAHa7HQAkZezq6upgMpmwvr6OJ598Eu9///tx5syZkKLN/R1z5+8pikJRURH+67/+CzqdDq2trVhYWMB3vvMdVbB3AVWwBcJuLCMewWT0ibh/yRnF+f1+ZgWglBnocBA3tOzsbKSkpMgi1sQUxmq1orW1FdnZ2RgfH49L6pmv/k3Gx4iZid1uh9frVVz9W6oo8kWgxIVsZWUFY2NjjIkJSaGLETClr9YkVFVVMYZApP4/OzuLwcFBRaxQFVLD5mK325kSgViSk5OZprO2tjZcuHAB9913Hx555JEd37t3714sLS0FfW5lZYUZSwOA4uJiZiMZoaGhAUtLS/B6vXFrivx7QRVsAXBnq0mX87lz51BRUYHq6mpZ04VbW1swm80IBAKoqKiQTawpisLY2BhmZmbQ2NgIjUbDjHxEA7lxSUpKYka2SLlACbVi9hwsAMbD3efz7ah/x3OhhZyvFdf/mm1iwhYwdgNbOAFTWoTNhWvswlf/5zYtyjkDLhQpKXEy0iXHNYasBOWjs7MTv//974M+9+yzz6KtrY352zhx4gR+9rOfBTX4jY6Oori4+KoQ61iMwj322GP44Ac/uOPnXC6XaOc/VbDDwDdbTS7yANDc3Mw0Qcn1ePPz8xgaGkJFRQXsdrtskZ/b7YbJZILf72ca4paXl6MWCTKzzU3Zs8e6lIZOp0NWVhbKy8uZbmSr1Qqr1costCCR6G7Wv2MpimwTk+rqakbArFYrJiYmIs5Ax7uGHQny/gz1+nFXqJLRKZvNFtTAJ3UGXChSBNtut0taqnLXXXfhhhtuQFlZGba2tvDEE0/gxRdfxDPPPAMA+NznPof5+Xk8/vjjAICTJ0/igQcewB133IHbbrsN3d3dOH36NH7+858zx/zoRz+KH/zgB/jkJz+JT3ziExgbG8M999yDf//3fxd1bkolFqNwAJCdnY2RkZGgn5Vi06sKdgj4ZqvX19dhNpuZWpJYI5RwkJSyxWJhbgR6e3tlqbeurq6it7d3x0IQKctFCBRFYWRkBPPz87wz20oWbCC4Nke6kdn1b7YfNql/s20kEx2+HeCkgY2ddSA3LkpPiYsd6eJzoCMR+ODgIPx+P7Kzs2XdgU56YMQKtsPhEGw3zGZ5eRm33norFhcXYTAYcPjwYTzzzDO47rrrAGzfbM/MzDDfX1lZiaeffhq33347HnzwQZSUlOD+++8PEp6ysjI8++yzuP3223H48GHs27cPn/zkJ3HnnXeKPj8lEotROGD7OiNHU68q2DxQFAWv1xt0ESDzxLW1tSgrK8Of//xn2ZqXNjc3YTKZkJqaGrQJS6iXeLjnQXZiHzx4EPv27Qv6utj1mgSXywWTyQSapkMatyhdsEPBl0omkSixkYzV/Hc8084pKSlBM9Ck657MgJP3wuzsLPLy8pCenq4oAY92BpusEeV7/lwL2dzcXEm2ueS9vFsR9unTp8N+/bHHHtvxuWuvvRY9PT1hf66zsxPnzp3j/Zrb7YbX6xV8jrsB3/sqJSUlYg+HXKNwwPbvcP/+/QgEAjh69Ci++tWvorm5WfRzUQWbBUmBE09nrVYLj8eD3t5euN1uZp6YiJCQTVeRHo/dVV1dXR30hxWNYBMrUK/Xi46ODl4nIikrMENF63yEO76SLvbh4NZCvV5v2Eg0XvVvOeF23dM0jcnJSSwtLTEjVGT/M8k8xHILlxDkNE3he/5khIzUwNkd+Lm5uYJuYNjZOjE4nU5JEfZu43a7UZKWCRuiuy7KTWZmJtNpT/jyl7+Mu+++m/f75R6Fq6+vx2OPPYZDhw5hc3MT9913H06cOAGz2Yza2lpRz0UV7L/BN1u9urqKvr4+FBYWoqWlhWlK0Wg00Ol0UUW/Pp8v4qpNqYJtsVgYK9DW1taQzTRijk/TNMbHxzE1NcUbrfOh5J3YUklOTg6a/2Yv8yDpRbaQiRmlUmpjl0ajQWpqKtLS0tDc3Mzsf7ZarbxbuOLRgR1LlzP2DvTy8vKgssnq6iozvsjdA85FqmCTCFvpeL1e2BDA4xnVSNcoo9/BSVN4n30Cs7OzQeZN4aJruUfhOjo60NHRwXz9xIkTaGlpwQ9+8APcf//9op7P371gs/dWkwsmTdMYHh7G3NxcyN3SQndJ87GxsQGTyRRx1SbZoS3muYixAhUqqF6vF2azGS6XK2S0Lvb4brcbW1tbyMnJ2fVmJrluJPjq33a7fcf8N1vAE7X+zW464+5/JraxZGyObRtLOrBjPTa3m7akfGUTsgc83Aw4aTgTe1NGdqonCllpScjQKmNMUkcFAAeYmX0hyD0Kx0Wr1eLYsWMYGxsT+Wz+zgWbbS8KbF+AyW5pAGF3S0uJsGmaxvT0NMbGxlBdXY3KysqI+4WFPgZJ3btcrpBWoFyENJ2tr6/DZDLBYDCgq6tL1OhLqOe2srKC3t5eANuvCdvcQ2m1UTGwzTxC1b8zMzODRqm4ndhKfe7hms5C2cbabDYMDw8HLfGQq4GL7/zi1cXOdwPDHaEjKXaNRhNU2xSC0+lMKMHWJGmg0Srj71hDRX8e0Y7C8R3PZDLh0KFDos/l71aw2bPVGo0GWq0W8/PzGBwcRGlpaURPbbHpaq/Xi/7+fmxubqKtrY15c4dD6GOQbVi5ubmiNoOFazqjaRozMzMYHR1FbW0t9u/fL1pMuJEsN62el5cHp9MJq9XK1EaTkpKCNnIlakQK8Ne/iX3q8PDwjvq3kgVbzLlxbWP5lnjk5OQwv2MpDVVclLT4gzv3T0boFhcXEQgE8NJLL+0YIQv3npXaJR4vtHoNtAoRbK1IwY7FKNxXvvIVdHR0oLa2Fpubm7j//vthMpnw4IMPin4+f3eCzTdbHQgE0N/fj9XVVcGuYnwrIkNBotSsrCx0dXUJFqFIXdykGWhiYgJ1dXUoKysTdeELFWH7/X709/fDZrMJvrkIdXxy/ty0ekZGBrxeL1MbJB2UxJGMG5EqzZFMCuxRIr76N0VRSE5Oxvz8vOj6d6yROofNt8SDNHBZLBZMTEwwESq77i8WJQk2FzJCp9Fo4HK5cPToUeYGZmRkBB6PhxkhI2tE2X/ndrs9odZX6lK10OmU8bvQBcSVvmIxCre+vo6PfOQjWFpagsFgQHNzM/7617+ivb1d9PP5uxJsvtnqzc1NmM1mpKam4sSJE4K7XYVEvzRNY2pqCuPj45Ki1HCP4fV60dfXB7vdjvb2dkkz4Xw3BFtbW0EjZtH4LxPBJstA2Gl1vufFNvcArnRkW61WZjaWRGZ5eXmyRGbxglv/pmkag4ODcLlciqx/yzWHzdfARRrY2PVfsXPvShZsAqlhszMQAIIyEGSJi8FggNfrhcvlgt1uR3FxsajHiqdjl0angUanjPelBvEfhfve976H733ve6LOIxR/N4LNN1tN6slVVVWoqqoSLabhImy2oB47dgw5OTmizzmUYNtsNpjNZkYApXbkEkEl6c6FhQUMDAygoqICNTU1UV+gNRoNlpeXMTMzI6hmz4XbkU3S56S5iR2Z5eXlCb65UKLIk13YSUlJOHDgQJAXtpD6d6yJVbpeq9UiJyeHeX+w956zn3ckC9FEEOxQpilkBpwscSEz4L/5zW9wzz33MBbFeXl5eP3rX4+mpqaIzzWejl1anQZahQi2VqRgK52rXrD5Zqt9Ph/6+vqwtbUlOeUbrumM1JRzcnKiElSuYJOIfWxsDAcOHJBUV+YeH9i+SI6OjmJpaUm2RSPkNZ+dnQ05tiYG9mwsWW5B0udzc3MYGhpCRkYGI96RBE2p42ahvLC59W/SyEWeb6znv3fLmpTbwMa2EB0dHQ1KH+fl5SE7O5t5nyhdsIXYkrL/zj/+8Y/jox/9KN7xjnfAYDDg2WefxRe+8AVUVlair68v7HHi6dilTdJBq5DSlcL/JERzVQs2XwrcarWit7cXOTk5OHHihGQx5ath0zSNy5cv4/Llyzhw4ADKy8ujFlQi2OQmY3NzE+3t7ZIidi7k3M6fPy/rrm2n08k4oTU1NUUt1nyw910Tb2wiaKQuuJuCJgfholi++jd5vuz5bzlWaYo9t1jCZyFKBLyvrw8URcFgMICiKCQlJSm6cU/Kpi6dTge32433ve99+MAHPgCfzyd6Yc9uO3apEXbsuGoFm0R45M6b3aEspUGLCzf6lTJWJfQxyNx2ZmamqKa1SFitVgDbnugHDx6UJUIhTmjFxcXw+/27ZqCRlJSEoqIiFBUVhTQ0IelkMbPtu42Qv0m+Ri6y/3t1dRVjY2Oy17+VIoTc9DHZAT47O4uNjQ28/PLLOwxMlHDegLTFH0DwWFdSUpJgd6x4OXZp9Rro9MoIbbUaeeyjlcJVJ9jc2WqtVgu3243e3t6wNp1iYdewibNYXl6eqLGqSGg0Gng8Hpw/f15SDTgUNE1jbGyM2Ux14MABWRYbENMWYjbz8ssvxyX1HGqhh9VqxdLSEjY2NrC+vs7sw87Nzd2V1YqRkPpaaTQa3vlvOevfUpZWxBr2DnCn0wmtVouioqIg45rk5OSgBrZomiijRcprSG5KpIx1xcuxS1FNZ7QyzkMu4n+VkpFAIACv18tEAxqNBisrK+jv78eePXvC2nSKhaTEx8bGMDU1JchZTAw+nw+Tk5Pwer04fvy45NEqLh6PB2azGR6PBx0dHTh79mzUS0y8Xi96e3vhdDqDboiUYk3KdqaqrKxEf38/gO3zI6sl+eqi8UCOv59w9W+p5QKlRNihIClx9u+ZfePCNjAhv+fd2oFNCAQCkh5P6lhXvBy7NFotNAopHivlPOTiqhBsYi/qcrnw/PPP43/9r/8FvV6P4eFhLCwsoLGxUfRYRCQoisLy8jL0er1sUTuBbO9KSkpCcnKybGJts9lgMpmQm5sb5I0ejahubm7CaDQiKysLnZ2dQSlwpQg2FzJaU1VVBWDbJpV0n8/Pz4OiqB37sHdDrGL1WslR/06UfdhsuDcupM/BZrNhfHw8aAc4mfOP5XMMBAKSShNyWZPulmOXLkmrmJS4TiGe5nKR8ILNbiwjbza73Y7h4WGmkYpv/WM0rK6uYmFhAampqejs7JTtLp29vauqqgoFBQW4ePGiLMcl8+DcZrhodmKT7uxQY3FKFWwuqampKCkpYeqixA+c1INJWpV8xKouvxtRbKT69/j4OOM2R4QsOTn5qtiHze5zALZv1MiNy8DAADP/TJ673I2KUmrYZMxLbEo8no5dGq2CrEkVch5ykdCCzbYX1Wq1TBq8p6cH5eXlqK2tlfWOmaIojI2NYWZmBoWFhdDpdLKJtd/vx8DAACwWCzMGZbfbo05X+3w+9Pf3Y2Njg3ceXMpO7EAggKGhISwvL6O5uZkZweGSKILNhm3sQbphiR/41NQUsw+b7b6m5MgzEnz1bzIuNzMzg8HBQWRmZjLvMamNU7FGylhXamrqjh3gpFGR9HeIXaEZ6RzFvnZutxuBQEB0Bi+ejl1anQ5avTL+RrQJdv2JREIKNp+9KBE8mqaZGWU5cblcMJvN8Pv96OzsxNraGmw2myzHJu5iKSkpOHHiBNMYE80+bOBKaj09PT1kd7nYCNvlcsFoNEKj0UQcA0tEwebCTauSxRbsqEwu9zUl1In53OZsNhsmJiawurrKXKzZUagSbliincPmm/NnZ1pI5oFdOhDbwCblZsfhcACA6JR4PB27FDXWJcPyDyWRcILNN1u9sbEBs9mM9PR0pKSkyDJSxWZlZQV9fX3Ys2cPGhoaoNPpYLVao45+gStpZT53MRL9SrmQk+NWVlaiuro65M+LibDX1tZgNpuxd+9eNDQ0RLxAXg2CzYW72MLhcDBR2eXLl6HX64OWl8SzK1kOSP17eXkZeXl5yM/PZ+r9uzH/LRS5jVP4Nq+RDVzz8/MYGhpCenp6UANbpFKJlDlsh8MBrVYriz/CbqGmxGNHQgk2d7YaAOP8VVNTg8rKSrz88suyzdlSFIXR0VHMzs7u2IsdzT5sYPu5DA4OYmVlJWRamVz4xKTShKar2Y8hxBOdGMIcPHgQ+/btE3Qu4QR7fX0dS0tLcbHZlEtQ2GNFxBebpJPZXcli3NfiHWGHgpxbWloa9u3bF1T/ttlsYevfu0Gsnc64mQeygYtkH5xOJ1MqIRu4uL9rqRF2onnma/VqSjxWJIRgs2erSbcq8ep2OBxBzl9itmiFg+zFpiiKdy+2lH3YBLvdznSBh1s4Qi5AQgXb6XTCaDRCp9MJXmQSKcL2+Xzo7e2F3W4XbQjDJ9iksW54eBj5+flYXl5m1kzm5+fv2lKPWET+fO5rJBol41Q5OTnIzc1Ffn4+MjMzE+ZCzNd0xq5/c7etkRsW4gMu5IYl2vPbzdQ82cBFbHzZpZKhoSH4fD5kZ2cHlQ6kCLbdbk84wVYj7NiheMGmKAp+vz8oBW6xWNDb24u8vLwdXt3RCClhaWkJ/f39KCkpQV1dHe+bTOqNAVmwIaQpji3YkVheXkZfXx/27dsXcZc3m3BRMBnZIg5rYrujuccmWYXV1VW0tLQwguVyuWCxWIKWerC7shN1J3ZSUhLvOk2yPpQIPHmeiRBhh4Ov/k0a9tjz3+Q5y1n/jreXON8OcLbTHhk9XVtbg16vFyzCibYLG1AFO5YoVrDJHzhZ2kEu/qOjo5iZmUFDQwP27du3449ep9NJTokHAgGMjIxgYWEBTU1NYU3uxTaEsVPVR44cYUZLwiFEsNlp+0OHDkU05ud7DL7jz8/PY3BwUNImMwJbsLnNasnJyfB6vUFjRtylHuwojZ1WVkKTk1j43Ne4ayW1Wi08Hg9TG1WC+xpByhx2cnJy0BgVW8RmZ2cBgGnYi7YLO96CzYZvderW1hYuXbqEjY0NzM3NQa/XB9X+Q2XDEjMlroUuSSkpcdWaNOZwG8tIFGY2mxEIBNDZ2Rmya1Jq5OtwOGA2mxlBiTS7LaaG7XA4YDKZRC/YIGNqoSJgt9sNs9kMn88X9jWJ9Bjs41MUhaGhIVk2d5FjWywWmEwm7Nmzh/EsD3UTwk0rs126yE5sdlQa7ahNvOBbK2kymQAA4+PjcLvdTEpV7mhUCnLMYcey/q0kweZCRgVpmkZjYyOSk5OZBraFhQWMjIwgNTU1yPudZLPUCDs6lHIecqE4weabrSYpamJAH64OJCUlTtLUpaWlgtPJQh+HnLvYVDUhlLgR//KCgoKoLFfZTWcul4vZstXZ2SmL4YzFYsHY2Bjq6+tRVlYm+ue5Ll2kK9tisWBiYoK5yIsxNVGiwOv1eqSkpCAnJwdlZWVBbmQkGo1nN7bc6Xoh9W92w57BYAj7N65kwQbA3NzrdLqgm9KqqqqgHeCTk5Po7++HTqfDL3/5SxgMBtHvw1OnTuHUqVPMVq/GxkZ86Utfwg033BDyZ86cOYM77rgDAwMDKCkpwWc+8xmcPHmS+fpjjz2GD37wgzt+zuVy7dyHraSmMxkmeZSEYgSbb7aaHe1FSlETxKTEpaSpCZEibIqiGGvUQ4cO7diEI+ZxuDuxJycnMTExIYt/OWk6Y0fBZHQtGvx+PzY2NuD3+3kNW6TA7cpmX+TJkgvSqZufnx/WE1yJ42bsc+JupSJuZCsrK8w2Lvb4WKy3osW6vs7Xhc3nfx6q/q10wSbvYb73Fd8O8JGREWxubuKZZ56BxWLBa1/7WrzxjW/EG97wBhw/fjzszUtpaSm++c1vMj7iP/rRj3DTTTfBaDTy7sKenJzEW97yFtx22234yU9+grNnz+JjH/sYCgsLg4xTsrOzMTIyEvSzfKl8NcKOHYoQbL7ZarvdDrPZDL1ejxMnTghOIwtNiZNObb1eL2kPdLgIm+yDBhC1NSp3Jzbp2G5vb4fBYJB8XDZLS0tYW1tDQ0MDSktLoz6ew+GA0WgERVEoKysLKdbRCgD3Iu/xeJimLrIrOR6e4NHAd36htnGRJr3+/v6Yu6/ttpc410aUXf+em5sL+t3m5uYq3us8EAgwJa5IJCcn49ChQ/jxj3+Mb3zjGxgYGMBb3/pWPP/883jooYcwODjI/M3zceONNwb9/9e//nWcOnUK586d4xXshx9+GOXl5fj+978PAGhoaMDFixdx7733Bgm2RqMRFDSpyz9iR9wFm6IoeL3eoDtk4qe9f/9+1NTUiHojComwSUNVNPalJDLl3tmTbu2SkhLU19dHfREJtRNbjojK5/PB4XAwo3Fy3ACsrKygt7cXpaWl8Hq9ESN1OSO3lJSUIKtJric4iUrdbrfs/vJyIDTq53NfIzcqAwMDCAQCQe5rctT54+0lzq1/c13IgO3af0FBgSINa9glPjHY7XYUFxfjtttuw2233Sb6/RIIBPCrX/0KDocDnZ2dvN/T3d2N66+/Puhzb3rTm3D69Gn4fD7mWmO325nyxdGjR/HVr34Vzc3NO46npsRjR9wEm6TASRc4sRft7+/H+vo646ctlnCC7ff7mbGiaBuqiBCx0/ekW7upqUm27WAajQbLy8uYm5uTdSf21tYWjEYjgG0f4WjFmr0Pmzz//v7+sCIUyzRrOE9w0p29tbWlmKYu9nmLhXujwlfnZ2capIzJKWnkjPu79Xg8OHv2LFJSUnbUv4kxT7w77qV6sDscjqBtfUJ/B319fejs7ITb7UZmZiaeeuqpkHuwl5aWdpTs9uzZA7/fj7W1NaZ36LHHHsOhQ4ewubmJ++67DydOnIDZbEZtbW3wATWa7Q8loJTzkIm4/BXzpcDX19dhNpuRlZWFEydOSJ69DZUSJ37dycnJgk1FwsEeuSLNWqFMVqTi9/vh9XoxPz8v+QaGD9JkV1FRgc3Nzajr1SRV73A4FLkPGwiOSklmJDs7e0dTFzt9vtvI8VqFq/PzjcnxOXKFOjcl3NCEo7q6GlqtNqj+PTY2BrfbHbP5b6FIFWyXyyWpWbOurg4mkwnr6+t48skn8f73vx9nzpwJKdp861TZn+/o6EBHRwfz9RMnTqClpQU/+MEPcP/99wf9rKKWfwTUCDtq2KsdATC2l7W1tdi/f39Ud/JjjTfC8Jcrxvc0TWNubg7Dw8OoqKhg3tTRQo6xsrKCkZER2Zq1CKTGTtM06uvrZRFr0gi3uLjIZBhIrVkqJFLPyMhImH3YwHajD3ulJmnqWl5exujoKNLS0oJmv3crQpM7ig21zIPtyEWWeeTl5YV0X1NShM2F/P2S8+Orf5PnzFf/3o3RQCmbuoDt64CU8k1ycjLTdNbW1oYLFy7gvvvuwyOPPLLje/fu3YulpaWgz62srECv14e87mi1Whw7dgxjY2M7vqY2ncWOuOWJtFotXC4X+vr64HK5ZG2i2vhfHwLsvbwrK+WCCNHQ0NAOn/FoIaNgZWVlsNlsstwEuN1umEwmZo6dXASiEdXFxUX09/fzLi6J9tixhn1e3KYuv9/PG6Gx0+exuMDvxmvFHZNjr5ScmpqCVqsNmoUmmah417DDQcpSoc6P23EfagtXLBe2SFn8AWynxKX4K3ChaRoej4f3a52dnfj9738f9Llnn30WbW1tIXtlaJqGyWTCoUOHdnxNbTqLHXET7JWVFZjNZuTn56O5uVm2CObw5efQW/VGPJd5GMlPP4C0tLSglZVyQAxLAEhyFwsFRVEYGRnB/Pw8Mwp24cKFqK1Wycx2YWEhDh48GHQDIGUfNqnXz83NRRyHU6pgh0Ov1wf5RLMtRWdmZqDRaILS59GWV9jspijyrZQk9X1i6EEyDRRFybKdLhaIGeni620gJiaxrH9HU8MWK9h33XUXbrjhBpSVlWFrawtPPPEEXnzxRTzzzDMAgM997nOYn5/H448/DgA4efIkHnjgAdxxxx247bbb0N3djdOnT+PnP/85c8yvfOUr6OjoQG1tLTY3N3H//ffDZDLhwQcf3PH4Wr0GWr0yhFIbUOZNplTiJtgejwd1dXUoKSmR9SLFfuN63/JxXLNllvX4a2tr6O3tRUFBARwOh2wXa3YEzB4Fi2YnNk3TmJqawvj4eMiZbbHH93q9MJlM8Hq96OzsDFuvDzerrtRojQ92hzJFUdja2oLFYmFELT09XfBGrnDE++aG7b5WVVXFbKSyWq2gaRqXLl0KqgVnZ2cr4vcYzQw2u2RAFrbYbDbYbDYmuyKH45xUwXY6naJ7YpaXl3HrrbdicXERBoMBhw8fxjPPPIPrrrsOwHZmjKxGBbabTp9++mncfvvtePDBB1FSUoL7778/aKRrfX0dH/nIR5h96M3NzfjrX/+K9vb2nSeg1W5/KAGlnIdMxE2wy8vLZVuDSfD5fLh8+TL8//Nt6P/pMwCA57OO4I323qiPTdM0xsfHMTU1xcwr//Wvf5VlMxjZM81XB5cq2H6/H319fdjY2AhbbhCTtt7Y2IDRaITBYEBLS4ugyCPcsZVwsReLVquFwWCAwWBgRI1t8OH1egXVhPlQWp2YbKQqKCjA/Pw8mpubmQ50pTTqAfKapgitf5PnLbT+LaWGTTr+SROnUE6fPh3264899tiOz1177bXo6ekJ+TPf+9738L3vfU/Q4wudN98NlHIechH3OWy5IHPKqampO968z2Uejkq0PR4PzGYzPB5PUBd0NNEvEDwKFcq0RMi+ai6kIz41NZVZtBEKocefm5vD0NAQampqUFFRIeiNEOpmgLi1Xb58GVlZWbu6VpOcl1ywL/DcjVxTU1NXxeYx8jtMS0tDTk5OkBc4u1EvJSUF+fn5jKDF2n2NEEuXM776t81m4x2ZC1f/jncNezdR1Bx2QBnnIRcJL9g0TWN6ehpjY2OoqalBUVERXn75Zbxhy4zns44w3ydVtNmrPLlRpZgFIFy8Xi96e3vhdDrD7pkWe1NAGsH279+P2traiOIUqYbNtodtbm5m7BOFwCfYgUAA/f39sFqtaGhogNvthtVqxeXLl5muVDG+4EqCbyOXmJEqpUXYBO6ID/k3t1GP7b7Gtokl6fNYiepu2ZKy699kZI7U/Nn1b/b+b3K92M0adtzRKCglrhF3HrHwYWfzxBNP4JZbbsFNN92E3/zmN6LODYijYMtxYfJ6vejr68PW1hba2tqQm5sLj8cDmqajrgfSNM2Mm9XV1aGsrIx3laeUCHt9fR0mkwkGg2HHKBQXoYLNblgT44uu0WhC3nSQujqZLxeb8uQKttPphNFohF6vR2dnJ/N6koYncsEnvuCkdpifny/77Oxu1IvDbR4jI1U5OTnMTYrSBTvc68/1w+aziZXbfY0QLx9xnU4X9PsNV/92uVyix7NISjzhtnXpdNDKNN4aLRqR5xErH3YAmJ6exqc//Wlcc801kp9PwkbYNpsNZrMZ2dnZQWlfchfr9/vxRnsvnss8zPyM0ChbTPQrJsKmaRozMzMYHR0VnFoWItika93v90dsBOM7Pp94Wa1WmEwmFBQUoLGxUVJ0wBZsslyEuCZpNBp4vd6g8wjlC97b2wuappGbm8uIm5yd2btFqJEqkl4lngHkuSolfc4XYUcilE3s2traji1r0T5XpSz+CFf/Jr9np9MpuP7tdDpB07ToGnbc0Wq2P5SAyPOIlQ97IBDAe97zHnzlK1/BSy+9hPX1ddFPBUhAwWZvq+IzWmFbhgIQLdo2mw0mkwk5OTkRo18xETaxXbXZbEw2QAiRBNtqtTLjcVKElVvDZt9UhMosiD321NQUxsbGgur0kSJc7gWfdGYvLi7K2pkdL7gjVYFAAOfPn4der9+xeSxWCz2EIkWw2YQapWJnU6S4rxGUIthc2PXv3t5epKenIzk5mblB0+v1QTPv3Pq3w+EAgIRLiStxDntzczPo8ykpKRFHfeX0Yf/P//xPFBYW4kMf+hBeeuklqU8nsVLiJPINt6xCo9EwvuSh4BNt9gjUgQMHUF5eLkv0C2y7FRmNRqSkpKCrq0vUTHio58Ku3UcjrOwIOxAIMEYzYm4qQkHTNDY2NrC+vh7Vik12vbSyspK3M5ukW/Pz8yNGLko0dNHpdNDpdCguLkZhYSE8Hg/zHMlCj3htHuM6iUULn/saiULZpQLyPZGaEZUq2GwoimLGA8vLy4P6G+bn5zE0NBRU/87IyIDD4YBOpxN1vVBCDVaj04pORccKjW7774Jr7/rlL38Zd999N+/PyO3DfvbsWZw+fZrZ4BgNCRNhk0gyJycn4rYqrp84N8oGgkWbXQsXIyxCVnkS326hTWBc+G4K2EtSot01TcSL1Jd1Oh06OzujTjm7XC7MzMyAoii85jWvkdW4htuZTVLLpHmNpFtJx3IiNa+Rv4+UlBTs3bsXe/fuDbt5bDf2YZPaeqxuEJKTk4OeK/v3OTk5ydSKyfPl/i0lgmBzm87Y/Q0AgmbeR0dH8b73vQ/5+fnYs2cPXnnlFXR0dAj6HSuhBqtEa9LZ2dmg0ma465GcPuxbW1t473vfi0cffVRUw24oFC/Y7NEnoZGk0FT1c5mH0Tb3V5hMJmRlZUUcgeISrobN9u0W0wTG9xjs58KO1js7O6MWQo1GA5fLhe7ubqa+HO3Fj9SrMzIyoNfrY7rqkC+1vLGxAYvFEtStTGrf5E2rtAgbCH1O4TaPcTuyY9Wgt1vRPJ/7GnEiY0ei5EYlNzc3IQQ70hw2mXkn7npPP/00fvzjH+Pxxx/HO9/5TrhcLlx77bX4z//8T7S0tIQ8jhJqsBqdTkER9vZ5kAydEOT0YR8YGMDU1FTQ74Vcz/V6PUZGRlBdXS34+Sg6Je7xeNDb2wuXyxW2+YsL34pNvigbAC6WvhbVfb8VPFvMJlRKnGzvomk6yLdbCuyU9dLSEvr6+qLa482GpmlYrVZsbGzg0KFD2LdvX9THI2n6+vp60DSN1dXVqI4pFm66lYyNsc0+kpOTkZycDI/Ho7i9yUL+Brn7sNnPcX5+nmlak8vQJJ4+4uxIlGtUMzo6Co/Hw/w+Nzc3Y+bzHi1ix7oOHDiAa6+9Fk8//TSGhobQ39+P5557TvA1kDxmXGqwCTzWxUc0Puz19fXo6+sL+voXvvAFbG1t4b777hO9iU2xETaxAJXiNS4kVc1m4tBNqJQwo63T6eDz+YI+t7q6it7eXuzduxcNDQ1RiyqJ4oeHhzE3N4fDhw/vqJlIgTih2Ww2GAyGqMWar/49Ozsbd//p1NTUoK1cm5ubGB8fh9PpxCuvvIL09HQm+hbb7CQ3UqN+7nPkGpqkpqYGpc/FemMradyM24ntdDoxMjLCjCACCGrkipf7GhcpxilOpxPp6enQ6XQ4cuQIjhw5EvmHEP8arBJT4kKR24c9NTUVTU1NQY9BSpjczwshroLN1/xDURQmJiYYC9B9+/aJvliESomHirKlotPp4Ha7AQRbl8q5vYukP91ut+iRrVCQtHpqaipqamqwvLwc1fFcLheMRiO0Wm1Q/TvS7223m780Gg1jK5qZmYmqqirGtYo0O7Ej091Yu8h3jtH+fChDk4mJCbhcLtGbx5S8C5sY1WRlZaGqqoq5WVlaWpLlZkUupBin2O12SR3ica/B6nTbH0pA5HnEwoddThQVYZN5Yq/XG2QBKha+lDhN05idnQX91Heh+cdP7fgZKU5oJCVOUvdutzuq8+Zis9kwMTEBrVaLjo4OWS42y8vL6OvrQ1lZGQ4cOIDFxcWoomAyr11UVISDBw8GXdil2KruBnx7k0mzk8ViYcZukpOTg5rXYn2xj8XNC9fQRMrmMSVF2HxQFIWkpKQgn/fKykrem5Xdcl/jO0exgi3VNCXeNViNRguNDKloORB7HrHwYRdyDKEoRrBJKrmoqAitra1RXRy5KXH2DHRraytCvbRiRVur1cLtduOVV15Bbm6ubGtC2bXgvXv3YmtrK+rj0jSNsbExTE9PB60ElbJekxyPPa9dXl6+43uUfJHnwm52IraT3Is913ktFs8v1q8Z3+Yxq9Uadr5dybuwgdBd4tybFW6tnyzyiPWoHE3TkgU73ruwpdRgNXodNArxElfKechF3FPigUAAY2NjmJmZwcGDB6OupQLBKfGtrS0YjUakpaUxM9DhUuNCRZumadhsNqyvr6OhoUHQ3LYQ/H4/BgYGYLVa0dbWBp/Pt2PoXyxs57bOzs6gi4CUKDgQCGBwcBCrq6th57WVGmEDkaNZdmNXbW0t3G43LBYL07ym0WiClnrI0by2253r3IiUO9/u8XiQk5OD1NRUxu5XicIttEucW+tnj8qNj48Hua/J6WVPggex0byUCFsRNViNZvtDCSjlPGQiroLtcrnQ09ODQCCwQ0iigTSDkQ1TlZWVqK6uFnyxiSTapGHLarUiMzMT+/fvl+W8HQ4HjEYjkpKSmJuLtbW1qERvc3MTRqMRWVlZvM5tYiNst9sNo9EIAOjq6go7r63Ei7tUUlNTeXdik1Ej4tSVn58flStZPF+zUJvHlpaW4PF4cPbs2bDz0PFCylhXqFE5m80mu9McEezdiLAVUYPVapTTJa6Q5je5iKtg9/b2Ijs7G/X19bJ252o0GqysrGBhYSHkhqlIDWihRJsdsdfX12N6elqWcya15dLSUhw4cIC5OESzwpOYtlRVVaGqqopXDMREwTabDUajEYWFhTh48GDE31m4pjK/34/p6WmkpqYiPz8/bs1AUuDbiU28ookrGXuph9CxPiXNhrM3j6WmpmJiYgJ1dXWwWCzMjXA0dqJyIsccNndUju2+NjAwAL/fL8p9jU0gEGAcGMVgt9tFm20ooQarxDnsq4W4XiXb2tpkjyjsdjsWFxeh0WgiRoCR4Ir2/Pw8BgcHmYh9bW1N8npNAkVRTEmAXVsmSBFs9uauo0ePMmYMfAjp1CYNeyMjI4JtW8Mdm2RWSG1vcHAQ2dnZzAUzMzMzppGm3MdOSkoKWurhcDhgsViCXMmIeEdqXlNiVoIIYk5ODnJycpjNVNHYicbi/OSE677mcDiYcgFZBRvOB5x7flJuZpxOZ8L5iAPYnn1WSNOZYs5DJuIq2Hq9PmrBY0ME1WAwICkpKaJYCxnzei7zMP7XhhFDQ0NYXl4OEkCp6zUJHo8HZrMZHo8nZElArGB7PB6YTCb4fD50dXVFjO6E7MMeHBzEysoKWltbGUMSIfAJNukq37NnD1OmYDcDTU9PB5mf5OXlxWRrVayiWY1Gg8zMTKZUEggEmAs9d6yKe3OipAibDV/tmnuTEsoeVo5tXJGItdMZ+3fKdl+zWq1MtoG4r/Eto5Eygw1sC3airdYEsF03VkoqWoE3wNGQOHnIMAQCgSBBdTqdWFtbk+34fzE0I+PPj+zYCR1Nunp9fR1GoxG5ubloaWkJGXWJSVmTY+bl5QnutA/3HEi9mji2RbsPe2ZmBiMjI4zFrM/nA03TOzqXycVwZmaGib6JwGVnZysyCg2FTqfjHauyWCyYnp5m1orm5+crtqkr0hw2n50od7d5LDeP7bY1KXfPeahmPRJ9+/1+SRG21DnseKOmxGNHwgu2w+GAyWSCTqdjBHVubk6wyAmJsqvfvh948B6k/SR4/EGsoxoQPA7Ftx6Ui9CbgtnZWQwPDws6JptQaWuyZlTq2k72sSmKYm6oSJROHpMrUtyLIdmLTWqnABiBU1Ljk1C4Nyebm5uwWCyYnZ2Fz+fD4OAgCgsL475Sk43YGwnubnNuPZhb4492nCreXuKhmvXIDQuw/V5YWFgQtctdTYnLgFLOQybiPtYVDYuLi+jv72dMQMibls84JRxCHdAm33sjKlmiHW75Bx9s+06h6WWSsg510STZhZWVFbS0tDBNM0Lhi+Clin+oY1+4cIGZBBAbpXP3YhOBY3dns61FlSBwQuHWhf/6179i7969cDqdO1Zq5ufnx81mM9o5bL56MHucihjUSN08Fm/BZsNu1istLWX2wS8uLjKz7mlpaUHLS0JlwqQap8SdBHY6UzoJGWETb+1Qm7CkRL7hmPjN9HaUjWDR1ul0gudT2SNbYtZXkgsRX+MKWTICRB6xCnd8Eu2SSHhpaUmS+HNxOp1wu93IycnBoUOHou4iZluLVlVVBUVu/f39oCiKufDn5+dHvSI0HhQUFCAzMzNoTnhlZQVjY2NMRz2pk+5WZ72cqXp2PZhrUCN185iSBJuLVqtFamoq0tPT0dzcDL/fv6OngZR8iFUseU86HA7ZXBN3FTXCjhkJJ9hOpxMmk4npAudrqpLSDBYpyuYT7XBiymZlZQW9vb3Yt28f6urqRF1cQj2GxWKB2WzmtQQVA4mCPR4PjEYjKIraUauXwuLiIgYHB5nFBbGozXIjN7vdDovFwvhIE9eu/Px85OTkMK+REuvEXLhzwsRm02KxYGxsDG63GwaDgRHwWHbWx9JLnDtORUogVqsVvb29QTdhoZZ5KFmwgWAfcb1eH7RGk91wOTc3B5qmcf78edA0DZ1OJyrCPnXqFE6dOoWpqSkAQGNjI770pS/hhhtuCPkzZ86cwR133IGBgQGUlJTgM5/5DE6ePMl8/de//jXuuecejI+Pw+fzoba2Fp/61Kdw6623hj4RrYKazpRyHjKRUCnxpaUl9Pf3RxQ+sRE2TdOYnJwM6TNO4Io2AOC9/xbS2J9tB9rU1ITi4mLB50RgCzY5JnuFpdj1bKGO/8orr0RVryaQ5zwzM4MDBw7g8uXLuyKQbIGrqKhgGoG4iz3y8/OZZjelES6S5dpssruyp6amYtpZv5vNcNwSiJDNY4kk2Fz4Nq2ZzWY8+eSTmJycxD/90z/hH/7hH3DdddfhDW94Q9gyWmlpKb75zW8yPuI/+tGPcNNNN8FoNPLuwp6cnMRb3vIW3HbbbfjJT36Cs2fP4mMf+xgKCwsZ45S8vDx8/vOfR319PZKTk/GHP/wBH/zgB1FUVIQ3velN/Cei1QJahaSiFfx3IQUNHccrF0VRO9ZThvo+Mlfc1NS0Y1aZy9bWFs6dO8e4+4TD5/Ohr68Pm5ubaG5uRvqvvwcAOPOJX4f8GSLahOL//tWO9KvX64XZbIbb7UZzc7Pk5hGapvGnP/0Jr3vd66DX6xnb0ubmZsYiMBqmpqYwPDyMuro6STvB2fh8PvT29sLhcKClpYWpX7/hDW/Y8b00TcPn8+3KxZZdN7VYLLDZbNDpdCguLmYu/PFcq0k4c+YM2traRNct2Z31FosFdrsdWVlZTPQd7ZKLqakpOBwO3ov+bsJe5mG1Wpl0MtnnXlBQoMjsycTEBHw+H+rr6wX/DOlf+L//9/+ir68Pzz77LN72trfh61//uqjHzsvLw3e+8x186EMf2vG1O++8E7/73e8wNDTEfO7kyZMwm83o7u4OecyWlhb8wz/8A7761a8GfX5zcxMGgwHLv/gustOVsdZ00+nCnps/hY2NDVG7xJWK4lPipE5LUZTg9ZIkJR4pMtjY2IDJZEJmZia6urq2o5IP3g3f/70b1/7gHSFFmx1pA8Dih98V1Iy2vr4Ok8kEg8GAzs7OqGqNGo0GGo0GDocDQ0NDQbal0UBRFNMHAABlZWVRXewcDgd6enqQlpbGWKBubW0pIpLl1k0nJiawsbEBmqYxOjoKr9fLpJfz8/PjslYTkB7Jhuqst1qt6OvrE5RWjsV5yQ3f5jGLxYKNjQ0MDg7u8HdXSg+D1MUfAPDWt74VH/jAB5jjCCUQCOBXv/oVHA4HOjs7eb+nu7sb119/fdDn3vSmN+H06dPw+Xw7mv9omsYLL7yAkZERfOtb3wr94FqdgiJshZyHTCg6Jb6ysoK+vj7s3btXlH1ppGYwmqYxNzeH4eFhXtvOJJZoA+GjbcLke29ExY9/xziC1dTURB2xEjQaDXp6elBaWiq6Bs4HMVfx+/1ob2/H2bNnozKAWV1dhdlsZrr1yXPe7X3XQiGNQHV1dcwYDlmrSUw/iHjv5g5luV6rSGll0qVMavuR3ldKEWwuaWlp2LNnD0ZHR9HV1cWUCbjd2PHOogQCAdGd70Sw2QGKkPd9X18fOjs74Xa7kZmZiaeeeirkHuylpSXs2bMn6HN79uyB3+/H2toaU8Lb2NjAvn374PF4oNPp8NBDD4XPXmq0yklFq01nsYdt19nY2IiSkhJRP0/emH6/f0ctj4xWra2the2EJqINgDfa5kbZADB169sAAC33PRZ1hzWwfaGcmJgARVGora3dsXdWChsbG+jp6UFeXh6ampqictmiaRpTU1MYHx/n/T2FE2ySOYg37DGcsrIy3rWaoZzJYnU+ch8vOzsb2dnZqKioCOpSHhkZCcouhLIUjWXTWbSQG02dTrdjFzZ5nqOjo4yZCRHwWP8e2QQCAdHRvtPpRFJSkuhMWl1dHUwmE9bX1/Hkk0/i/e9/P86cORNStPl+19zPZ2VlwWQywW634/nnn8cdd9yBqqoqvO51r+M/CXVbV8xQnGC73W4m+pO6wYsINjdq5G7DEvMm4ou2+UQbADY/+QHkc0xWxEJq61tbW0zEFy3ERpEd/bMNTMQQCASYHePt7e0wGAw7vkepEXa48+Ku1eQ6k5HmLiJwcq1gBHbHmpTdpczOLvBZipLnp+R92OQ9zr2h4HZjc5v02OYusTbgCdd0Fgq73S7Jjz05OZlpOmtra8OFCxdw33334ZFHHtnxvXv37sXS0lLQ51ZWVqDX64OuN1qtljnm0aNHMTQ0hG984xuhBVtNiccMRaXEV1dX0dvby4wqSU1hkc04bPMU0mHO3YYVDnaUTeBG26FEm2uyIgayESw9PR2dnZ3o7u6OKmXNrldzt5eR34GY47vdbvT09ECr1aKzszPkxU6pgi0GPttUIt6Dg4NMcxeZGY5W2HZTGLnZBT5L0ezsbMY+Vond2ELPiWtmsrm5CavVumM9aiw2j0mpYRPBjhaapuHxeHi/1tnZid//Pvga9eyzz6KtrS3sjWi4YwL4W5e4Qv5OlHIeMqGICJuiKIyPj2N6ehoHDx7Evn37oj4mGe0S22HOZbdFe2lpCX19faioqEBNTQ1z8yFVsNnLQDo7O3nn1sXsxCYrNoXMf7PT7XxC5Ha7ASBh7EXZzV3A9mtLotPZ2dmgpqf8/HxRo1VKuLHhWoqS5rWpqSmsra3h5ZdfZkbjlNLUJeUmgu0wx16PGqvNY1KWfxBbUjGPe9ddd+GGG25AWVkZtra28MQTT+DFF1/EM888AwD43Oc+h/n5eTz++OMAtjvCH3jgAdxxxx247bbb0N3djdOnT+PnP/85c8xvfOMbaGtrQ3V1NbxeL55++mk8/vjjOHXqVMjzoDUa0ArJyCjlPOQi7oLN3ljV0dEhm7OPTqeDy+XC0NAQY4sp9Y41lGgDV1Lk4UQbQEThJnX72dlZHD58OKgZRKpgb2xswGg0IicnJ+wyEKELRkhKXeiKzXCCPTc3h8HBQVAUFdShvZu1xWhJSUlhZmjZURt5ndiOXUJHq5T03Enz2vr6OpKTk1FYWAiLxcI0dRFjGr4NVbuFHFF/pM1jZJWm1Bl3KSlxh8MheI86YXl5GbfeeisWFxdhMBhw+PBhPPPMM0yD2OLiImZmZpjvr6ysxNNPP43bb78dDz74IEpKSnD//fczM9jkPD72sY9hbm4OaWlpqK+vx09+8hPcfPPNoU9EqwO0cZeWbdSUuHxQFIVz584hJycn7MYqqfT392PPnj1RpdcJfKIN8Dek8REu2mbPbHd0dOyo20sRbLJqtLq6GpWVlREXjERasUlS6mIsS/ka2miaDtrVnZyczDQHxbpGHEu4URuxTbVYLOjr6wNN02GjUyVE2KEgTWekea2ysjJoQ9Xw8HBQVLqbo3Fyp+n5No9xt8eJ3TwmtYYttn/n9OnTYb/+2GOP7fjctddei56enpA/87WvfQ1f+9rXRJ2HGmHHjrgKtlarxbFjx6Le1sOGpmlcvnwZbrcbZWVlu2L2wI62+aJsAp9okyg43My2GMEmJYCFhYWg3d3hCBdhe73eiCn1cMcFroiRz+eD2WyGy+VCR0cHkpOTEQgEgmrE//lTPTAJ3HCgm1mtKXf0vRtCwrVN3dra2hGdsn3Bd/PcxBJqHzZ7QxWJStmjcUS8pSz0EEqs6+rcGfdQm8eIgPPdqEidw07IxR+A2nQWQ+Ket8jMzIyqoYqN1+tFb28vnE4nsrKyZHECA1gbsfa/FtdM/zXk95FoW6hoC42ChQo2EVev14uOjg7Bb/hQEfbW1hZ6enqQnZ0tKQPCFmy2sUpHRweSkpKCXO7u/rEWwJUL7x9Hr5g9vOOIiYm+2fPR0YjAbka07NEqdnRqsVgwODjIXPSB7bq+nLaiciB2H3YgEGCa88hCD/aCCzl3mu92I1yozWNra2uYmJjgvVGRmhJPXMFWm85iRdwFWy6Iu1h2djY6OzthNptl2djFXjbS2dmJpNe/njc1ThAi2u4ffAaX3/AB3q5tPoQI9ubmJnp6emAwGESLK1+ETZrfKisrUV1dLekCS37GYrFgYGCA8YDnHmtbrEPza/NRAMAn32rZIQKJWPvmRqcOhwOrq6uwWCy4dOmSaGOTWCPWOIXtaw4EL7iYnZ0FgKDmvGiaDuPZuR5p81h/fz+ys7Ph9/uZmrTQc3U4HIm5CxtqSjyWJLxg0zTN6y4mx4pNMmZWXFyM+vp65s0Wqp5NICnyuecvhfyequcfQ8WH7haUYo4k2AsLCxgYGOB1bRMCdx57fHwcU1NTO5rfpNLb24vGxkbe7v///KnwP8H7/pAPYLt+/tl3ORl3Mm70nZeXt2vuZNFCLvqpqamYnJxER0cHs1aTGJvk5OQwzysetqnRzmFzF1yQneYLCws7ygNiR6qUNGrGt3nMYrFgc3MTIyMjGB4eDupjCGcRm8gRNq3Vg1ZI05lSzkMu4v5sorkQ+P1+ZhlGa2tr0CabaASbOIxNTk5GNWZW8eGbMfXfv9jx+cVXh1B8vAHa03cDn/h2xOOEqjFTFIXR0VHMzc0JrlfzQVLifr8fvb29sNvtUXfsk93aAHDkyJEdwn/XaT8A6b/7b/4qHUA6gDJ86T3+HTuVw0XfSo7Ek5KSgoxN2LXhiYkJJCcnMxf83bJNlXsfNnuneaitauFqwmyUJNhcUlJSUFRUhOHhYcYu1GKxhN08RnA6nSgqKorj2UeB6nQWM+Iu2FKx2+0wGo1ISUnhXYYhVbC9Xi/6+vrgcDhw/PjxkBteIkXZAOCfHI8o2u4ffAapEUSbL8ImneUejyeqkTVyfJfLhZGREaSkpDANYVLxer0wGo2McQ33NdwWa/nYjtILABTg7lsp5sIYKvpWInw1db7aMNmJPT4+HrQTOz8/P+p54XDnFitR5CsPsGvCycnJQTVh7g2KkgUbAHMN0ul0Qetf2ZvHiAUuSZ+7XC7Y7XZUVVUJfhzF7MIGQGt0oBXS7EVrlHEecpGQgr24uIj+/n7s378fNTU1vG9YKYK9ubkJo9GIzMxMZuNUOISIthAiiTZXsMl5Zmdno7m5OeooKxAIYGRkRJblIqRRzWAwoLW1Fc8//zwjRnILNR/b9fB03H1rKtN5TkSORN8pKSnQ6XSS7R9jSbhz4aZc2dH35OQkYykpd2f2blmThqsJs0WN3HhlZWUlhGAT8yM2fJvHbDYbfvOb3+BrX/sas1e+uLgY119/PcrLy8M+jmJ2YQN/i7AV8jtR0HtbDuK6DxvY/oNmW4iGg8wDLyws4PDhw2FTRmNjY3C73Th06JCgYxOzC7F14MuXL6PszONhv0dfWcMbZQNA8fEG5t+hRHtwcBBarRb19fXMzYrUejUbmqYxPT2N4eFhlJaWoqmpSfKxgG3jht7e3qBGtWeffRYnTpzA15/YXTczj/vK39Q3brty8XC5XBgfH8fGxgYCgQBjihHv2rfX68XLL7+Ma6+9VlKTGdtW1GKxwOl0Mp3Z0dqmXrx4EWVlZbL0M0QDyZxYrVbYbDZoNBokJydDr9ejqalJkY55xGb4ta99reCf8fv9eNvb3oa8vDxYrVZ0d3fjhhtu2GEjGond3IUNXNmHPfvik8jOVEb9fdPuQNnr3nnV7MNWyG1QZFwuF1599VWsr6+jq6srYn1HaIRNURT6+/sxMjKC5uZm0R3ROp0OfUfeFvZ7SGo8Eu4ffIb381qtlomCBwYGcOTIEcmd2wSyvGNychLZ2dmM3aYUSM2/t7cXhw4dYixVge2o6as/290xJbZYA8DnHqXwuUe3MxRpaWlMDfWaa65BQ0MD9Ho9Ll++jJdeegk9PT2Ynp6G3W6Pi5mJ1N8psRWtqanB8ePH0dnZieLiYqZ09PLLL2NgYABLS0vwer2ijq2U9ZqpqdtZk0OHDuE1r3kNDh06BL1eD6fTibNnz+L8+fMYHx+HzWaTbVQ0WqTMYOv1erjdbtx888146aWXYLFYcM899wj++UAggCeeeELSLuyLFy8GjVsSaJrG888/j5GRkYg3H7RGp6gPMZw6dQqHDx9mxjA7Ozvxxz/+MezPnDlzBq2trUhNTUVVVRUefvjhoK//+te/RltbG3JycpCRkYGjR4/ixz/+sajzIiRESpx0a4vZiy1EsF0uF0wmE2iaRldXV9iuzVAQMRWSHuerZ5NaNoEvPU7TNLNFh88JTSxutxtGoxHA9gKAvr4+yRc49tYuvpr/81OvAwBQ1Lb4abWxvfBzxZoNEW2gFP/SsRHknc3dzDU5ORk0Uxvr6JtvrWE0sDuziW2qxWLB7Ows79KScGllJa7XJM5y2dnZTF2YNK+xDU3Y3fXxQMoMNhDcJW4wGARlChWxCxsArdGCVkhKXOx5KKq0wEPcBTvcBYo9YiS2WzuSYK+trcFsNmPv3r1oaGiQfEHS6XSM2Glu/QLoH/Pb+Pknx6GvrBEt2ltbW5ifn4derw/phCaG9fV1GI1G5Ofno7GxETqdTtTyDzZE+MmMOjcl+dlHd96px1K4w4k1l5+dawTOUUHpcu5mLlL7vnz5MgYGBnalwSsWsG1Tq6urmaUeVqsVZrMZQPi5aKVE2HyQCDY5OTnID9zhcMBisWB1dRVjY2NISUnZ9e56QNriD3L+Yqc0FLELG9iuXytEsMWex4033hj0/1//+tdx6tQpnDt3jlewH374YZSXl+P73/8+AKChoQEXL17Evffeywg297X65Cc/iR/96Ed4+eWXE0+wQ0G6oImNpdg/3lCCTaxLL1++jIaGBpSWlkZ1niTCJru2U5r+AUf7/1/YnwnVOc7G/YPPYP1dd6Cvrw85OTnQ6/VRX2SIs1ptbS32798flLYWG2ET4S8oKEBjY+OOixKfWLOhKFpW0RYj1myuRN3BtW6+6JvUT0n0zW7wivZ3I3eEHQ6y1KO4uJiZi7ZarVhYWMDw8DCzajI/Px8Gg0Hx+7C5zXXs5rX9+/cjEAgwvuekec1gMDDPMZamO1IjbLKtSwyK2IUNgNLqQCmkS5ycx+bmZtDnU1JSIvY8BAIB/OpXv5JUWjh9+jR8Pt+Ov02apvHCCy9gZGQE3/rWt8Q+HWUKts1mg8lkQk5ODrq6uiRdDPkE2+fzMXPG4Ua2xD6O1+tFd3c3ysrKUFtbC+2xY7zpcRJlAztFmxtlA0DOr/4/HH73p5gOUqmw/cX5nNXERtjEqIUr/IRIYn3lvOSJtqWKNRci3mzhJqSlpaG0tBSlpaVB1ptsAYgm+o5X7yd7LprYppKyAEkt0zQNi8WCtLQ0SWWjWCKkS1yn0+3oyCbPcXp6mrk5IxG4nNawcqTEpRKXXdiAIuewy8rKgj795S9/GXfffTfvjyiltMCHogSbdC2PjY2FFAOhcAV7c3MTJpMJGRkZ6OrqkmXkhaZpLC4uwu124+jRo0G7tkPVtMWKtuGX34Xnpo9LrjGz57VD+YsLjbDJqMnMzAyvUYtQoeYSjXDLJdZsQkXdBLb1Jjv6Zte+pUTfSohiuasm7XY7enp6YLPZmBWL7KUl8bZNlTLWxS19kG1c7Pq+mG1ckc5P7GsUCATgcrlERdhK2YUNbDedUQqZfyZNZ7Ozs0EBWrjoWjGlBR7iLtjkSfn9fvT19WF9fR1tbW1RdS0DwbVlkgqOxhebC4nWt7a2kJSUFCTWBKmNaFyKfvsAljveJfocyUhJZmYmOjo6wu7DjhThcV3QuBcTqWLNZrca08TwuUcp0H87r2/+K/9FSI7oW4nrNTUaDdOQVl9fj/T0dKaxi6zUJK5k+fn5sm7dE0q0c9hCtnFxn6MYpNSw7XY7AIgqAypmFzaU2XRGur6FoJTSAh9xF2zgirCkpaXhxIkTsqSkdDodfD4fM8oSjXUnF2IOkpmZicOHDzMd13zwiTY7ygaCRZsvygaAQ+d+BRw7JvgcyUx0RUVF0JgVH5FS4k6nEz09PUhJSeE1lJFDrNkIFe5YRNdciFgDwGcfCd3ESMQ8muhbCRE2H6TpTK/X77BNtVgsWFtbw/j4ONPYRZaW7EZjl9zGKdxtXHa7HRaLBSsrKxgbG0NqampQhiHSc5SSEnc6nQAgKsJWyi5sANuOw0r5W5bhNOJWWuAh7oLtcrlw7tw5QcIiBr/fz6S7xO5xDgcxLiHRusPhiDg+JlekLcTGlN1Ud+jQId7In0u4lLjVaoXRaERJSQmvC5rcYs0mXGPabot1JEKLeTK++a9Xom+ucxcZPUpLS1NklA3wd4mzbVOJKxmJvkdHR+HxeILGqmLVVR9LpzOSYWDbiZLmNWLMxN6Fzde8JnW1ZkpKSsIssOFCKSglLvY8lFRa4CPufxHp6eno7OyUdZWcxWKByWQCABw7dkyWejV70caRI0cY4xaSeo80+sIVbW6UDVwR7VBRNhBetElZYXNzU1RnfagIe3Z2FsPDw6ivr9/RtAHEVqwJfNG20sQ6Emwx12hzAeQCqMaX3uthou/Lly+DpmkMDw/L1nkuF0LmsLmNXWzb1MuXL8dspn03rUnZGQbgynO0Wq2YmpoKyq6Q5rVAICDagU2JlrliUGJKXChKKi3wEXdrUgCSUgN80DSNyclJTExM4MCBAxgaGsLrX//6qFPsHo8HZrMZXq8Xzc3NQY1bXq8XL7zwAq677jpBd9LcSJsr2uwoO5RoAzttTJ1OJ4xGI5KSknD06FFRz3l4eBgURTFNFcQCluzr5luYsRtizYfPG/2O80jIKdZsNBFS/G+q/StKSkpgtVqDou/8/Py4rNUk/OUvf0FHR4fkDnF2Xd9isQR5gkc7VvXqq6+iuro64k75WEOyeWT0z263M17nBoMBBw4cEHxj8dJLL+HkyZOYnp5OKNEm1qTDF88iSyG7vLfsdtS3nbhqrEkVcQsvpOkpEj6fj4ku29vbkZ2djaGhoah3Yq+vrzMjZi0tLTsiA/ImFNoNGik9LiQ1DgRH2iSjwN3bLRQySw7s3ALGV0r4/A8D0Om2HyMQ2D0LSLfrSmSt08XmQhYvsQaAP429Fhi78v//dsNCUIRaUFCw68YfNE1HbZzCV9cnkSnZpsY2bhGTEVPK8g928xoAxpzm8uXLWF5exvLyclD0He7mx+l0JniErQGtkHNXynnIhSIEO1pI01p6ejq6urqY6JItRFIgC0FqampQUVHB+wYiF4tAIBDxQsM4t5WewOvmzgKQnhonx5uZmcHo6GjItLUQSA2bjPCE6ir//A93vpa7Jdxssd5+vCvCKpd4x1Os+XjwjyUASgAAn36HLWit5m5F3+RGWk5RDDVWNTMzg8HBwaClJdnZ2Qm5D5uY0ywtLaGoqAhZWVmwWq1YWlrC6Ogo0tLSmOfIHY+TYwY7ntDQgJaj20sGlHIecpHwgk1MPPia1qTuxKYoCoODg1hZWUFLS0tQez4XrVYraI6ZjEVtbW2ho6MDSVnXRR1pex64ExONb456DI7swz537hzKy8tRW1sb9DryCTWXWAk3V6j5kEO8YyXWcnHvr0nte/vm7mNvnmciuOTk5JjZbsbagY07VkUiU4vFgrm5OQAIqn1z68FKFWwC2QhHxorYzWsWiwUjIyPwer2M85rFYsHW1paonp5Y7MJ+9NFH8fjjj6O/vx8A0NrainvuuQft7e0RzyeRm86UjiIEW0pKnL1qk90ExkaKYBN/bJqm0dnZKahuFymSJxuTUlNT0dnZyWQASHqcL8oGroh2uCi7a+AZpL7+9QKeGT80TcNms8Fms+HQoUMoKSlhviZEqLnIKdxCxJqLFPGOpVhLja4j8dAz+wDs9Na/vuaMrNE345O/S6lFPttUi8WC+fl5DA0NITMzkxFvYpuqZMHmK5Vxx+PI6N/IyAhuueUWZGRkwGAw4Je//CXe+MY38vaQsInFwooXX3wRt9xyC7q6upCamopvf/vbuP766zEwMBBxpwMNBTWdJc5CSkEoounM5/OJcvJyu90wmUwIBAJobm4OObL10ksvob6+XvD8tdVqhclkQmFhIQ4ePCh4HOOFF15Aa2srDAbDjq+trKygt7cXZWVlOHDgAO+Fj0TafKINIKJoA6F3aYeDrBZdWVlBdnY2c/csRahDIVW4pYh1OEKJdyKKtRQ+9Y9W5Obmih4xinZPt5ywTU0sFgsoikIgEEBlZSWKi4uRmpoa1/Pjo7u7G3V1dRFFl+ByufDFL34RZ86cQXJyMgYGBnDs2DE8//zzotLkcu/CJgYyDzzwAN73vvfxfg9pOuvtuYSsLIU0nW3ZcbilVW06ixcWiwVms5lZOhHuIiI0wmZbotbX16O0tFRURMEXYZMd0ZOTk2hqamI8ZfkQ0ojm6esN/xz+38PQ/MPJsN/DxuPxMJmEiooKbGxsyCrUBCkRt9xivf34OyNvpafB5eS7TxHB2Pl74LNfJezmUpJIcE1Ntra2cPHiRVgsFkxNTSE9PT2oLqyEyFvsHHZaWhqysrLQ1dWFH/7wh1hYWMDZs2cFi3UsFlYA241wPp9P0I0HpdEqJhVNKSTSlwtFCLaQiwFN05iamsL4+Djq6upQVlYW8eeECDbZ52y1WnHs2DHk5OSIOXXmcdgZAna9WuiSESLaoaLslEOHBYk2gIjC/e1f6wCkAzix/YnF7f8YcoCNdW/Ec5WCEOGOhVDzEQjQ8Lp9SE2Lfj4/FEqKriPxuUepHed7z4f+dlOjIMFmQ4xbAODw4cPQaDRMXXhoaIixTU3EfdjsprOSkhK8612RbYljsbCCzWc/+1ns27cPb3zjGyOei9olHjsUIdiRIIYgGxsbokQ1kmCT2WW9Xo+uri7RBgcErVbLCDazZvNvNp5i5qGTPng36Bd/EvLr4UTbc/kyUqqqAGwL968KPompefECaMjZPt/dFu7dEmsA8Lp9f3vMK7Pkcop3Iok1wH++d50m2YcUXFelUZxgA1fq61qtFnq9HkVFRSgqKuLdh822FJVSGojmHKVYk4bLyPERi4UVhG9/+9v4+c9/jhdffFFQ2YGmdaBoZUTYtELOQy4UL9jshi32yJYQwgn26uoqent7Q1puioGkxFdXV2E2m1FaWirKKIGN5nXvBYCQwi0k0gaAd63dB6QgIYQ7HmLNRS7xTjSxFsKfL78Of768fUEnkbcSYAs2G+4+bLal6OjoKNOVHeuxOOKAKCXCVsIubAC49957cc899+C5557D4cOHBZ2LOtYVOxQh2KHeLMS3e//+/TtGjYTAJ9hsr+3GxsagrmipaLVaLC4uwmKxyHbMtcY3oWDgT7xfCyXa7CibQIT7O55/k3QehpzkmIk2ALgcV4Qy1mIXSqy5xCryViJiX/MrkXf8xZuiKGg0mog3xqG6stmmNFLWoUaCXHvE3rhLEWwuciys+M53voOvfe1r+NOf/oS2tjbhj60KdsxQhGBzoSgKIyMjmJ+fDzmyJQSuYEupLUfC7/fD4XCApmlZjsm2V21qegPs/lTUTPy/nY/75puhf2bnnDafaAPA/0l5UFHRtn1z58WENIHFQriFijUXMeJ9NUbX4WCLN7D7Ak4EWwwajQbp6elIT09HWVkZs5CFuw6VNK9FY5tKMgCxjrBjsbDi29/+Nr74xS/iZz/7GSoqKpiInGQuwj5vaEEpZJxKKechF4oTbLfbDbPZDJ/Ph87Ozqgcf9iCTVLraWlpomvLoSBrJwFg//79UYs1aYCz2Wxob2+/MiZW9t4dKfKM+SE4Qoh2KJSSJucTazbs7m05RFCqWHMJJ96JKNZyn/NuR99yzGDrdDomugbA2KZaLJYg21RS/xZjm0p2YYsVfLGCHYuFFQ899BC8Xi/+6Z/+KeixvvzlL+Puu+8Oez40rQFNK+P9oJTzkAtFCDb5g7ZarTCbzcjPz0dbW1vUjSFkJ/bS0hL6+vokp9b5YNfAPR5P1Md0uVwwGo3Q6XTo7Ozc0QD3QqAYr9ctBn0ulGiHirIJ71q7D7/aJ020gejS5JHEmks04i2XUPPx95Q2FwtN0fjco1d+b+HGxqIhFqYpfLapZGxscHAQWVlZjMBnZWWFfd8TwRaLWGvSWOzCJq5pUlAj7NihCMEmI1tjY2M4cOAAysvLZRFVrVaL9fV1LC8v4/DhwztGGaSeK0lZk3p1f3+/KOMXLjabDUajEUVFRTh48CDvm1yr1WLj6FuxukUHpcijEe3djLbFCjUfYlLmsRRrLlsbLubf2bnxGR8Sy25mBD736PZ7Q27hjrXLGds2taamBh6Ph9nGNTs7C41GE7S0hJu1kzLSRTrcha7GVSJqDTt2KEKwV1dXMTk5KXkOmg+v14uFhQW43W7Z9m37/X709/djfX09KGUdzZIRsnO6rq4O5eXlIb+PjI7VluXtSJFLSY8TdiPalkOs2USKundTrH3e4Ndt0+Zk/p0o4i0n4cxoiHADwNf+t/juaS67bUuakpKCkpISlJSUgKIobG5uwmq1MkuCsrKygpaWSBFsYLvUFq+5cTmgoaCUuCrY8lNUVITXvOY1oupD4djc3GR2Q2dnZ8si1qRenZSUtCNlLcWznL1zurW1NaKDEHvWG9ge/xqbtTHRNp9oR4qyCbGKtuUWaj644h1PseaiVPFWQr39Cz/UgLiuffE9bkkCFU8fca1Wi5ycHOTk5KCqqoqxTbVYLOjr6wNN00hPT0cgEIDb7RZlm5roEXYAWgQUkopWynnIhSIEW6PRyCbW8/PzGBwcRFVVFdLS0jA9PR31MdfW1mA2m0PObGu1Wni9wmu6Xq8XRqMRfr8fXV1dgheMcNPutWW5GMM/hBVtMZBoG0DUwr0bYs3Fsbmdmk5Kjv2fdSSx5qJU8ZYTqVavX/1pKoh4f/odth3rJkOhpMUffLap09PTcDgc6O7uRnp6OtO4Fs421efzwePxyBJkxAu16Sx2KEKw5YAdsR49ehSFhYVYWVmJah822w714MGDIbfUcK1Jw7G5uYmenh7k5OSgtbVV8Mwnn2DTNI1kahPP+fbgjUnLAHaKttAom/CutfsAQFKa3LLmFvX9cuK0X3lsIqa7IdxSiKd4xyq6lsuXfXuNKPDP7eaItqJKEmw2Go2G2ekdCATQ2NjILC0ZHBxkFmmQ9Dn7ht1utwNAQkfYNJSTir7atgUo769dAh6PBxcuXIDNZkNnZyeznUvqPmxgu2Gkt7cX09PTaG9vD7tSjk9M+VhaWsKrr76KsrIyHDlyRJRBA/cxKIrCwMAAJiYm0NbWBs3r3ovx6n9gvu5/883Mvz2XLwt+HMK71u5DxT49Kvbxn6Nlzb3jg01qehJS03ene5ot1mx8Xr/oSFgIch5z0+YM+lDZ5onzh/DgH0vw1Z+moru7G6Ojo7BYLEHvZym2n7sJqWEnJSVhz549aGhowIkTJ5jNfisrKzh37hzOnTuH0dFRdHd3Y21tDQBEdYmfOnUKhw8fZnZud3Z24o9//GPYnzlz5gxaW1uRmpqKqqoqPPzww0Fff/TRR3HNNdcwTXdvfOMbcf78eUHnQ9FaRX1cTSgiBImmI9xms8FkMiE/P3/H9i4xkS8btsc434gVl0g3BjRNY2xsDDMzM5KNYNiCTVLqgUAgaGc3O0Xu2NcQ0lxFKO+knwAAnErbFv/ZWYfoYxDRdjtjU1sOJdZsfF6/bNF2LG4A2FhXtgAAeUXyR1hKj65D8ZS5Pej/39O5HX17vV5FepwT+JrOQtmmWiwW3H777RgfH0d+fj4efPBB3HDDDSFX8rJR3D5sNSUeMxSxDxvYFiExp0LTNGZnZzEyMhJyFGxrawvnzp1jDASEYLFYYDKZUFxcjPr6ekEpt/n5eczNzeH48eM7vub3+2E2m+FwONDS0iK5NnXp0iUUFhYiNzcXPT09MBgMaGpq4o3Sx2ZtAIBi9+UgwRaTGgcAKv/KGNwpm3TRZiOncAsRay7RCHesxdrv47/pk0u8E1Gw2WtRw3Hnu9YF1753i4mJCfj9ftTV1Qn6foqi8Otf/xr/5//8H7S2tuLMmTMoLi7Gz3/+c3R0dIh67Hjuw/7z+VlkZCpj97TDvonr2svUfdjxJBAIYHBwEKurq2E7rEnkS9N0xLtU9k7shoYGlJaWCj6fUJG8w+FAT08PUlNT0dnZGVVjnVarxcbGBkZGRlBZWYnq6uqQz6m2LBdjszYsplahOIp6ttayzIj2R3O3j3EKN0cl2nJF3FLEGpBe346XWAPyRN2JKNZi+Navcv72ryuv47dPxle8xRqnaLVaFBUVITMzE8888wxcLhfOnDmD2tpaUY8Z733Y6hx27Eg4wSaOYBqNhknXhILcbUcS7Gh3YvPVsNfW1mAymaLa3EUgZgoOhwNHjhzB3r17I/5Mbdl2887YbLBoi4Ut2sC2cEcr2sC2cEsVbalizUbpjWl8EOEGYpMyVxpCo+tQfObh4Jug3RbwQCAgemUvcTkjnuc33HCDoJ9T1D5sNSUeMxRztdJoNBFT4iRdvXfvXjQ0NEQUQSLYfr8/pHc4uQHQarWSd2Kza9hCO8uFQm4mXC4XSktLBYk1m+1ouwprb/4mmp/5rOgom4+P5v4CyN1Ok+92tC2HWLMRItzxjK5DISbqvtqja6EQAWe/HN/819iJuBTjFLG2pAQl7cMO0BoEFCKUSjkPuVCMYIeDLYJi0tXkzRKqIUzsDUAoSIQdCAQwMDAAi8USvLxDIm63Gz09PUyqTGpKvbYsF5i1wfg30RYLN8omyBltA5GFW26xZhOqMU2JYs3mao26o42uQ8G9d/nsI8Gvv5wCLqWL3W63S+pzUfdh86OU85ALxQt2KDtQIZBduXw7sUm9ur6+HmVlZVGdo1arhd/vx/nz56HRaNDZ2SnK2YiP9fV1GI1GFBQUoLGxEcPDw5L9yu12OxYn+1BceYgRbbFRdqxFGwgv3LEUawI32la6WHPhi7oTMbqOlVgLQU4Bl7L8Qy5b0njuw6YoDShKGUKplPOQC0ULtsPhgNFoRHJyMrq6uiStxOSOXLGj4La2NuTm5spynn6/H5mZmWhsbIzazGFhYQEDAwOora3F/v37mRsPKYJNaunl5eWo3mdAJUXhgkTRDoVcKXICt769G2LNJtZCDcgv1mxiORoGJF4qnCDl3oUr4IBwEZeaEhcbYStvH7YGlEIiW6Wch1woRrC5tZOVlRX09vZG3bTFFmx2vVqOKBgA5ubmMDg4CABRizVN0xgdHcXs7Czj1kYgUbwYpqenMTo6isbGRhQXFyMQCICiKByrBCbf/jnU9IprRAsVZRNiEW2zU767hdu5MzJJTRff2xBvVhfWg/6/qDT6m9NYE8/oWihCo/DdEmx1H3ZolHIecqEYwSbQNI3x8XFMTU2hqamJt2NRDESwrVYrTCZT2BWWYqAoCiMjI1hYWMChQ4dgNpujOp7f70dvby/sdjs6Ojp2vGnFRNjEpnVpaQltbW0wGAyMWGu1Wmg0GlSVZGMcN2PNbUDH6H8JPk8hoo1c4K7etwo+ZijWLQ5oddu/JyogfX2pGPjEmvv5aMU7ltE1IeDf+Rgrc7YdnxMr4okaXceSzz4S4BXt3RJsxe3DpjWgFCKUYs/j1KlTOHXqFPP8Gxsb8aUvfSlst/6ZM2dwxx13YGBgACUlJfjMZz6DkydPMl9/9NFH8fjjj6O/vx8A0NrainvuuQft7e2hDhkSRQm2z+dDb28vHA4HOjo6ZPHT1Wq1WFpawtLSUsQVlkLxer0wmUzwer1B89VSF9aTTWApKSkh57WFCrbP54PJZILH40FHRwdSU1OZDAMRa0JVSTawsIFzBz6CfWkrKDP/RvS5h+Kew3+QnCJft+z8md0Q7lBiHe77xIp3vMQ6FHKIuFzEMrqO5YKyT7x1CS5X3o4lPlKazhwOh6BZZyVD0dsfSkDseSjNNY6LYgR7a2sLFy9eREZGRtQmI4RAIACPx4Pl5WXZ6tVbW1vo6elBdnY2WlpaoNfrGSGVUmO2Wq0wGo0hN4ERtFptxLE3h8OBS5cuISMjA8ePHw9quNNoNLwjG0S0511FwJG3A0BE4Y4UZRPERtt8Qr3jsWMk3ELFOtLPhRPw3RBrOQgl4mp0zc/y8jJGR0eRnp7OLPTIycmRdAMvJcJWHApKiUPkedx4441B///1r38dp06dwrlz53gF++GHH0Z5eTm+//3vAwAaGhpw8eJF3HvvvYxg//SnPw36mUcffRT/8z//g+effz6ka1woFCPYm5ubKC4uRk1NjSz+wG63G0ajERRFobKyUhaxXl5eRm9v7w6nMfJfsYtGZmdnMTw8LKhTPVKETUbUSktLUVtby4yZkYa1cFSVZKMKNM5f/pvHuQDhFirawHa0HU60hQj1jseXUbilinWkY7HFe7fEWkx0LYaVORsCrOewd39+mO8WT6JG1wDQ0tICv9/P7MMmG7kCgQDW1tag1+sF98sk+i5sQJlz2Jubm0GfT0lJiei5oQTXOC6KEezS0lLRTVWhsNlsMBqNKCwsREpKStT1apqmMTExgcnJSRw+fHiHS5BGoxG1aIS9CjSctSqbcII9MzODkZERNDQ0YN++fTvq1UJpr6Jx/rIG864i7EtbwWwE4RYr2twUuRSh3nEOUQq3nGId7tj6pNi/1WIl1gCCxBoAlqYtAOQX7kSD1K71ej2KiopQVFQEmqaxubmJS5cuYW1tDZOTk4L3Ycs11hVPaHr7QwmQ8+AGROGa55TkGsdFMYItR1TNtxCkr68vqp3Yfr8ffX192NzcDFtX55v35sPr9cJsNsPj8aCzs1Pwm5NPsNmNb21tbUwaTopYE7iiDQCzR94uS337vXU9QB1w5y+E+7QLRYpwx1Ks2fh9fvh92zejqenRTybwsZtizYYINyBdvBM5uuaD2IoCQHNzMyiKYjZysfdh5+fnIz8/Pyj6ttvtiR9hUxoEFDL/TM5jdnY2aPlHuOhaSa5xXK6aZaFkP/T4+DhaW1uZ+eVodmI7nU6cO3cOPp8PnZ2dYd9IQiJsu92Oc+fOQafToaOjQ9SdNFewfT4fenp6YLFY0NHRwdsJLpX2KhrtVTTmXUXbtW1sizaJuIPOy7Is+LhZK2MAgG/dPIc9JbHZnKPVaRnxDsduinXw47qZj6uNpWkL8yGURBjjCkW4eWx2o2dSUhKKioqYfdgtLS3Izs7G0tISuru78eqrr+J3v/sd/vCHP8DlcsV9F/bAwADe+c53oqKiAhqNhqnPCoVE2Er5AMC8PuQjnGAT17i2tjZ84xvfwJEjR3Dffffxfq8U17hnn31WsGscF8VE2NFA6tU0TQfthwYi76oOBakJR2oGI0SqMa+ursJsNqO8vBy1tbWiBZV9fKfTiUuXLiE9PX1Hc1m0Ys2mvWr7r/385eBoGwhOk4tJjbMhor28sBnhO8UTLuKOl1jvPI9t0Y426o5XdB0OOSLvRIY0nHHfixqNBllZWcjKykJFRQV8Ph9sNhuee+45PProo7Db7fjmN7+J+fl5xgwlHLHoanY6naiqqsK73vUu3H777aKf+9VmTRpP1zguiomwpYqMzWZDd3c30xnNHa0QK9jEtrSnpwd1dXWCPcZDpcRpmsbk5CRMJhMOHjwoaCE9HxqNBhRFwWq1oru7GwUFBWhubmY+T85BLrFm015FY19xYdDnQkXckSBR9h3XDDKfi1W0DeyMuJUi1myiibpjKdZyESryjnV0Hct0eCS3M6EjXST6/vznP4+JiQnG+OTHP/4xKisr8ZWvfCXsz9944414y1veggMHDuDAgQP4+te/jszMTJw7d473+9ldzQ0NDfjwhz+M//2//zfuvfde5nuOHTuG73znO/jnf/5nScuQAjQQoBTyIfJP7K677sJLL72Eqakp9PX14fOf/zxefPFFvOc97wGw7RrH7uw+efIkpqencccdd2BoaAg//OEPcfr0aXz6059mvufb3/42vvCFL+CHP/wh4xq3tLQEu90u+rVN6AibdFmTejWfWIkRbJJWX1tbEz0GxpcSpygK/f39siwD0Wq18Hq9uHTpEurr61FaWhq06zsWQs2FiPb84irzOXbELTTKzloZw1ZRLe64ZhD/30vbdaFYRtsABKXJ5UKMWHMRE3XHWqylRtfhYIt2YWlizxuHQ4ppilarxfr6Ov793/8ddXV1WF9fh9PpFPWYsehqFosSm86EojTXOC4JKdgURWFoaAhLS0toaWnZUStgI1Sw3W43TCYTk1YX2xDAjbA9Hk9Qmj4aG1TSTOfz+XDs2DHk5eXtuliz2VdcGCTawBXh3jfXLepYbNEGYifcrr/5kZPXKtJMu1SiEWs27GibT7wTUazZeNwezI0vAgBKa6JzM+QjntE1IM1Eyev1wufzMb0yOTk5yMnJifhzse5qFosSm86EojTXOC4JlxJ3u904f/48NjY20NXVFVasAWGCvbGxge7ubqSnp6O9vV2SuLIj7M3NTXR3dyMtLU3y8Qh+vx89PT3Y2NiAXq9Hbm4u01wWD7EmcFPkhPlS/jt7LiQ1DgSnxwl7SrJlSZW77G5GrNmQ107O108useZytTapEebGFxnxvlqQaksKQLRxCulqPnfuHD760Y/i/e9/P7PfgA8xXc1SiHeTGV/T2dWCYgRbCOvr64yw8tWr+Ygk2AsLCzh//jwqKipw6NAh0W8yAomwl5aW8Oqrr6K8vByHDx+WfDzgSpc6RVE4fPgwaJqG3+8HTdMxq1eLYV9xIa9wyyXagHThDiXUfMgh3rESaza71WG+G9E1H3IJd7yja0CaYJOaptg57Fh1NUuFpq/Yk8b742oTbEWlxDUaTchU5dzcHIaGhoJWTgohlGDTNI2RkRHMzc3t2IwlBa1Wi5WVFWxsbODIkSMoKiqK6ng2mw09PT0oLi5GXV0d06X4yiuvoLCwEIWFhcjNzY3aFEYO+FLk86WdsPly0LQcfsSEDTc9zkZMqlyoUPPB/rsSmjbfDbEmuO2u7f9i+79ZebFr2IsXsUyV7xZSfcQzMjJkMXqKtqs5GtR92LFDUYLNB9sVLFK9mg8+wSYLMtxuNzo7O0XNPfLh9/uxvr4Ov98vy9KS+fl5DA4Ooq6uDmVlZQgEAtDr9Xjta18Lm82G1dVV9Pf3g6IoFBQUoLCwEPn5+bK94aRQVJCDlbX1HZ/v33NDWNEmDWiEcKINbAt3KNGORqj5ECLe8RBrNlvWK6+FHOIdr+iaD6UJt9DoGpBWw7bb7cjIyBCV6YnFLmyv18uk1L1eL+bn52EymZCZmcmMj4UjkZd/KB1FC7bH44HJZILf7xflCsaG271tt9vR09PDLBnR66N7CVwuF3p6ekDTNEpKSqISa/Y+7ObmZuTn5+8wQyHRNbE/XF1dxeTkJPr7+5Gbm8t8XUi5QC6cTieMRiMyMzPR1NSEpRUrACA3aR02X05E0eYiRLSBK9G23ELNB594x1usuRDxlircShJrNmKEO5bp8JWVFeTl5Qm6ZkhJiUuxJY1FV/PCwgKam5uZ/7/33ntx77334tprr8WLL74Y8ZyUVDtWynnIhaIEm50S39jYQE9PD/Ly8tDU1CS5FqzT6RiP8pWVFfT29ko2L+FCPMv37NkjaJtWOLj7sNPT08M6l2k0GhgMBhgMBtTU1MDlcmF1dRWrq6sYHR1FRkYGI97Z2dkxq3evr6/DZDKhuLiYmTFnp8jZog2AV7i5UXbIx7IGi1ZK6nZGYTcEm41Go4Hnb/PcWn3sSxJCxJpNtMKtVOIZcX/4DZOYnLRgYGAABoOBsRUNFRFLrWGLjbBj0dVcUVER1bWMzEArAaWch1woSrAJpF5dU1PD2ONJhaTEJyYmcPnyZTQ1NckyukDOkezYHhsbC1k3igSJ0pOTk3H8+HHo9XrRzmVpaWkoLy9HeXk5fD4f1tbWsLq6ip6eHuh0uqC6dzSNcGyWl5cxMDCA2traHY5M7JltItpA6BQ5X2r8S7+tFHQeOQXbWY31tS0pT0M0Hpb5CuX/m2lNjIRbrFizEZMuV2p0zUco4Y5ldF1TU8PcGJOtXJOTk0hKSkJBQQHy8/OD3ltSa9gJv1oTaoQdSxQl2BRFYXBwEIuLi2hubkZBQYFsx56dncXx48eDDOClQJrV5ufng2rqkaxJQ8GO0uvr60HTdJBzmRSSkpJQXFyM4uJiZvHA6uoqhoaG4PP5kJ+fj8LCQhQUFCA5OVn08Ykb3OXLl3Ho0KGwDXsk2uaKNsAfbbP5z5smBYs2cEW4gdiItyeMS1qshTtawkXdsRbrWLFbEfd/fjAAr3d7VW1ycjKKi4uZrXjr6+uwWCzMDXtOTg7y8/Ph8XhE98aQprNEJxDY/lACSjkPuVCUYPf29mJzc1NyvZoLiVwBoK2tLeq7V5/PB7PZDJfLhY6OjqA3lxTP8oWFBQwMDODAgQMoKytjxFrOkS2tVsuk7+rq6mC327G6uoqZmRkMDg7CYDAw0beQiwVpAlxdXUVbW5ugGyA+0QZ2Rtt8qXGxok2QO+oOJ9Zs5BTuaKLrUMjdpCYEOaNrPohwl9fGRrj1ej3z3mS/x7VaLbN1C9iuQVssFqytrcFmszGNqAUFBWFXahKuFsFWI+zYoSjBrqmpQXJyctSNYABgtVphNBqxd+9e2O32qNPADocDPT09SE9PR0dHx46ObDERNk3TGBsbw8zMDI4ePYqCggLZNm2Fg714oKqqCm63m6l7j4+PIz09nRFvg8Gw4zxInd3j8eD48eOiDGGYee3FVUmi/d/mo5iZ2hD9nOUQbqFizYYINyBNvGMh1lyIeKdnJb5IaLVazE2E3xxXWi1+Qc13PnYlA0VRFGiaZlwGKYpi3vMajQYpKSnYt28fysrKYDKZkJqayrgy+v3+kCs1CVdLSpyCcrqzr7IStrIEOysrK6rd1YSZmRmMjIygvr4eZWVlmJ+fj+q4a2trMJvNKC0tDbm8Q+g+bO5+7UjNZbEkNTUVZWVlKCsrg9/vh8ViwerqKkwmEzQaTdDImM/ng9FoREpKCo4dOyb5pmpfcSGvaAPhU+QfPmLCf+MoAOyqcEsRay5io+7dEGuCx+mCx7n9eLl75CtBMcePcXQNCC8dRRJ0ILyok8dh16nZ4k3e/xqNBoFAAFlZWdi3bx9omobD4YDFYsHy8jJGR0eRnp7OiLfBYIBWq4Xdbr86BJuiQSlEsZVyHnKhzIKbRLg7sUkjlNQVm6RWazQaUV9fj7q6upCCKuQxiK2q1+sNEmslOJfp9Xrs2bMHTU1NeO1rX4vDhw8jKSkJo6Oj+Mtf/oKXX34Zer0eDQ0NUWdA9hUXIjdpfcfniXCzHdDYfPiICQBQXiF9iUpOQRbzEQ6P0yOLWLOh/FRQ5M3Hbos1G9vyGvPx98rcxDLzwY6u+SC7rpOTk5kPnU4Hl8sFh8MBvV4Pr9eLQCCAtLQ0lJWVoaWlBa95zWtQUVEBr9eL/v5+/OxnP8Pb3/52TE1NiboGxGIXNgA8+eSTOHjwIFJSUnDw4EE89dRTgs8JAGgKoBTyQV9lIbaiBDsawfJ4PLhw4QI2NjbQ2dmJvLwrm4CkCDYR/4mJCbS1tWHfvn1hv59vWxcbYquanZ2Ntra2oHOKpyc4H6Q2R1b2aTQa5OXlgaZpnD17FufPn8fk5CTsdrvk8Y99xYVoKt9p9CJGtKMRbgAhhVtuoeYSSrjjKdZc5BBuJUXXsUar1TIjpH19fSgpKUFBQQEz7hkIBOD3++Hz+aDValFYWIiDBw/iNa95DY4dO4a6ujqYzWY8+uijOHbsGL785S/jwoULYR+T7MK+ePEiLl68iNe//vW46aabMDAwwPv9ZBf2NddcA6PRiLvuugv//u//jieffJL5nu7ubtx888249dZbYTabceutt+Ld7343Xn31VcGvRdxXanI+riY0dKzWFkmA/FGLZWNjA0ajETk5Obx+4C+99BLq6+sF2496vV4YjUYEAgE0NzcLMiFZW1vD0NAQrrnmmh1fW1xcRH9/P2pra1FeXs68geMdVUdidnYWY2NjaGxsZDb8eDweZmTMYrEgJSWFqXsLaazho3/Gx/v5/fR4yJ/5b/PRoP+Xkibnsr62FXOx5kOr1+6qWAORBZuL2HR5oov1z79bFvmbODidTly6dAlFRUVBpTN27Zv8m6DVapmPW2+9FU1NTairq8PTTz8Np9OJ3/72t6LOIS8vD9/5znfwoQ99aMfX7rzzTvzud7/D0NAQ87mTJ0/CbDaju3t7y97NN9+Mzc3NoEj9zW9+M3Jzc4Pc0PjY3NyEwWDA1366jtR0ZXgAuJ2b+MJ7crCxsRH1hJASUFQNWwpEDKurq1FZWRn1TuytrS309PTAYDCIWgbCV8OmaRrj4+OYnp7GkSNHUFhYGLd6tRiI4xqxg2Wv+CONNWSsxWq1YnV1FX19faAoihHv/Px8walzEmlzhXtaUxNWtNmUVxgki/bW+vbOYZ1eh/TsdDg3he8glgPKT8Hn8SIpRfyInRTEijWAoGg7FrVupTE3N4eCggLBjZUul4tXrIHg2jfJwrHFmwQpCwsLOHHiBG699Vbceuutos5Xrl3Y3d3duP3223d8z/e//33B50JTNGiF1I6Vch5yoSjBFiNgbBvPSMs2hAr28vIyent7UVlZierqalHnw02JBwIB9PX1YWNjA8ePH0dGRkZCiHUgEEB/fz/sdjva29vDjtexDVlomsbGxgZWV1cxMTGBvr4+5OXlMV8XcuFrKk8SLNofPmLaEWWTFLlQ4SZCzSU9e/s574ZwOzauNMH5PF4AiKlwSxFrLkS8Qwl3okfXX/83HxYW1jA8PIzMzEwUFBSgoKCAd3IC2BbrixcvorCwMGRTKve8yX9Jp/lLL70Eo9GI17/+9aLOVe5d2KG+h7vhKxxKSkUr5TzkQlGCLRSfz4fe3l44HA50dHRE7KyMJNg0TePy5cuMEcjevXtFnxM7wna73YzDGBkBE+tcFg+Id7tWq0V7e7uoZSIajQY5OTnIyclBbW0tnE4nVldXsby8jJGREWRmZjLinZWVFfI14Iu2w4n2N56rQ2FhcMkinHCHEmk+Yi3cbLFmEyvhlkOs2UQS7lgR67p1VVUVqqqq4PV6mblqo9HITE4QZ7OkpCS43W5cunQJBQUFYZtSQ6HVavHqq6/illtuwf3334+TJ0+K+nmyC3t9fR1PPvkk3v/+9+PMmTMhRVvILmy+7xHzvNQu8diRcIJN5qHT0tLQ2dkpSFTCCTaJKG02W1ROaCTCJh7o+fn5aGxsZGpXgPKay9jY7XamD6CxsTHqi2J6ejr279+P/fv3Mxe+1dVVTE9PIykpKeKKUG60HUq0P/fGEXzjuTrecyBpcjEizftcYiDcocSazW6myaOBLdy7EV3HEnbtmriaEcfAjY0NrK2tMct2srKy4HQ6kZeXJ0msAeDChQt45zvfia997Ws4efKk6GOQXdjAtjnUhQsXcN999+GRRx7Z8b1CdmGH+h5u1B0O1TgldihKsCP9sa6ursJsNqOsrCxi6olNKMEmkbBWq0VnZydSUlIknTcAphv0/PnzqK6uRkVFBZPu0mg0iulm5cNqtTKvq9hSgBC4Fz5S9x4YGGCcoIhVKvsGTIhoW5KK8ZEbtg1A/uuPwTdbq6supGUkIy0jGSvz61E/D7mEW4hYE+SKtuWOrvmwLa8h4N9+n2Xl58TkMeLVaEYmJ3Jzc1FbW8ssvdHr9VhbW8PZs2eZ6DsvL09Q74vRaMTb3/52fOELX8AnPvEJWd530e7C7uzsxJ///OegOvazzz6Lrq4uwecQoGgEFBLZKuU85EJRgh0KmqYxNTWF8fFxNDY2oqSkRNTP8wn2+vo6jEYjCgoKoo4oaZpmVtg1NTVh7969CVGvBrYbXYaGhtDQ0CD6dZWCVqtlLmz19fXY2tpiIu+BgQHk5OQw0Xd6evqOFDlXtPN9i7AkbVtSfuSGzR2iTSjalwMAsgm3VNEWI9ZsohHu3RBrAIxYA8CWZZ35t1zirZSbXo/Hg4GBAWY0i/j1r61t1729Xi/y8vKYv3O+KZO+vj687W1vw6c//Wl86lOfknSNiMUu7E9+8pN47Wtfi29961u46aab8Nvf/hbPPfccXn75ZcHnRSto/lkp5yEXihdsdsq6vb0dBoP42VuuYBMP79raWuzfvz8qQWWfH7A9VpEIYk3TNCYmJpjd2+y59d1Co9Ewpg/V1dVwuVxYW1vDysoKxsbGkJ6ejqKiIhQWFqKxLBsDs9vdtJFEG9gZbRPkEm4p0bZUsWazG41pUmCLNRci3rGKuuVA6BiXx+PBpUuXYDAYcPDgQWg0Guh0Okac6+rq4HA4sLa2xvRvEMvfzc1NNDU1YWJiAjfeeCM+/vGP46677pJ8jYjFLuyuri488cQT+MIXvoAvfvGLqK6uxi9+8QscP35c8HlRFI1AQBmR7dVWw1bUHDaAoHSOy+WC0WiEVqtFc3Oz5JT12NgY3G43mpqagjrLhc5lhzvXnp4eaDQaHDlyBGfOnEFXVxfS0tIUXa8mpjDr6+tobm5WpB2iz+dj6t5ra2uM2URhYSGWXTkAgue0iWBzCSXcgDzRNiGScMsh1lyEiPZuRNfhxDoUYsU71tG1EMH2er24ePEisrOz0djYKOj97fP5mBLQv/zLv2BpaQlZWVlobW3FD3/4w7DTLYkGmcP+zKlVpKQpY+bZ49rEtz9aeNXMYStWsMnayaKiIhw8eDCqN+zly5exvr7OePq2tLRELVKbm5vo6elBbm4u8+Y9e/YsvF4vCgoKUFRUJGoWebfw+XwwmUygKApHjx6Nqm6/W1AUhfX1dWZRicfjwZ7a1wIQJtpAfIU7FmLNJpRwxyMVLoVI4q0ksc7KykJTU5Okm/HR0VG8733vQ1ZWFjweD4xGI44dO4bTp0+jsbFRyqkrCiLYn35IWYJ978euHsFWlppgO006MzOD4eFhHDhwAOXl5VFHqoFAABaLBTk5OYI7y8NB5rWrqqpQWVnJGP93dHQwNdnx8XH09/cjLy+PSetK2T0tJ06nE0ajEZmZmWhqaop6g9luodVqkZeXh7y8PBw4cAAOhwMrK7Nw6suC0uPs1DiXcKlyuevbwBXhjrVYA/FNk0cr1kBs6t1CESrWly5dQmZmpuDImsvU1BRuuukm3Hjjjbj//vuh1WqxtLSEP/7xj7vSO7KbUAEalFJS4go5D7lQVIRNURTMZjMWFxdx9OhRZtQgGiwWC3p6eqDX63HttddG3Vw2OTmJiYkJHDp0CHv27Albr94WlhWsrq4yd59EvOXY9y0G0tVaXFwsqsNeidA0jZGRESwvL6OxsRFLToPgSBsIH20D8kXcjg0HnJt2WY4lhqSUZMWmwsWQlS/N6lYMkQSbiHV6ejoOHTok6Xzm5+dx/fXX4/rrr8epU6cU0zwnN+Qa9x/3LSsqwv7+J/eoEXYsIA0cnZ2dsggaWbNZXFyMra2tqN4oFEWhv78fFosF7e3tyM7OjthclpGRgcrKSlRWVgbtnh4bG0NGRgYKCwtRVFQU1khEDpaXl5kmO7LBLFEJBAIYGBjA1tYW2tvbkZaWhgIA/TPCIm0gto1pjg1H0P+nZ2+XXnZTuO22bcOYWEbcsRZrIDjyNhTK3xQZSax9Ph96enqiEuvFxUW85S1vwete9zo89NBDV61Ys1Ej7NihOMFuaGgIu/VKCBRFYXh4GIuLi2htbYXf78f6+rrk45F6E03T6OzsRHJysuhOcPbuaZ/PxyzQuHjxImMkUlRUJHmBBh9kPShxcIu2yS7e+Hw+mM1mBAIBHDt2LKjEsD3+1YCt6aHQB+AgRLiFiDZXpPnYLeFmR9ZK7SiXwsaqlffzsRByYPtv7dKlS0hNTZUs1svLy3jrW9+K9vZ2PProowlTgooWiqZBKSRxq5TzkAtFCbYceL1emM1meDweJlK3WCyS9mED28tALl26hJycHKbZJFqb0aSkpB1GIisrK0ELNEjTmtQ3OblpWV1dRVtbW8Kng9xuN4xGI1JTU9Hc3Bzydcnavy3akaJsNlLr20KEmksshTtUGpwINyCPeO9GdC0UqUIeLromkXVKSgoOHz4sSazX1tZw4403oqmpCY899pjimk9jCU3Tktfuyo1SzkMurqq/Irvdjp6eHmRmZqKjo4N5k0TaVR2KlZUVmM1mVFZWoqqqinEuA+TrXGUbibAXaIyNjaGvrw/5+fnMOJPQpjW/34/e3l54PB4cP35c8MYhpUJsU/Py8tDQ0BDxtZci2oAw45XJwXnBxwuH3MIttGYdrXgrSazDEU7II4m10WhEcnIyjhw5Iul9brPZcNNNN6GmpgY//elPo25yTTQCAeXMYSvlPORCcQUVqbXc1dVVnDt3Dnv37kVzc3PQHS1ZLC8U0lxmNpvR1NSE6urqXbEZJQs0amtr0dXVhePHj8NgMGBubg5//etfceHCBUxPT8PlCn1xdrvdzOL7Y8eOJbxYr6+v4+LFiyguLhY13pe1vwHAdj1bDB+5YRP/fN0VUVq3OII+cvfkIHdPjqhjhiM9O5MRbyl4nC7JDWY+j5f5EEKiiHU4Qgk5sH2jazQaodfrJUfWGxsbuOmmm1BSUoJf/OIXcZ8MiQc0TTMrNuP+ITLCPnXqFA4fPswYOnV2dgbtBufjzJkzaG1tRWpqKqqqqvDwww8HfX1gYADvfOc7UVFRAY1GI2pVKZeEj7DZtqVNTU0oLt4ZURGnMyFbZ4ipyNraGtNcRsR+N53LNBoNMjMzkZmZGdS0RlzAMjIyUFRUhKKiImRmZkKj0WBzcxNGoxGFhYWor69P+AaXlZUV9Pf3S26WI5G2FP75ugAefsId8utEtG3L65KOz0VKxC1nJ7jcaXOl8vTjR3g/7/f7mWmSI0eOSCpFbW1t4R//8R+Rl5eHJ598MiE8DmIBraAatljBLi0txTe/+U1mocqPfvQj3HTTTTAajbyz8pOTk3jLW96C2267DT/5yU9w9uxZfOxjH0NhYSHjIOd0OlFVVYV3vetdO3aNi0VRY13A9htHaL2ZdAxbLBa0tLSEtC31eDz4y1/+guuvvz6siHm9XhiNRgQCAcZZjUTWSrIZZTetra2tISkpCZmZmbBaraiqqmLu5BKZubk5jI6OorGxUdSmID62podEpcYBYNOfwfw7nHAT5BJuQiTh3i1TFCLeV0N0HU6siaPi0aNHJYm1w+HAO97xDuj1evzhD39ARkZG5B+6yiBjXR/+6jSSU5XRM+N1b+K/v7gfs7OzQX08KSkpgm+o8vLy8J3vfAcf+tCHdnztzjvvxO9+9zsMDV0JDE6ePAmz2Yzu7u4d319RUYH/+I//wH/8x3+IfzJI4JS4x+PB+fPn4XA40NnZGdZjnLwBw6XF7XY7uru7kZycjPb2dqYTnKZpRYk1cKVp7fDhw7j22mtRUFAAi8UCrVbLLNFYWVmR3GgXT4jH+djYGJqbm6MWa2A70habGs/WX2koO/nPkcsKu5kq3y2xBrYjb6/Lg4BPeEkpkQgEAlGLtcvlwrvf/W4AwO9+97u/S7FmQ9HK+gCAsrIyGAwG5uMb3/hGxOcRCATwxBNPMBrDR3d3N66//vqgz73pTW/CxYsX4fP5eH8mGhIyJU5sQfPy8tDY2BjxTUa+HkrAyNrO/fv3B9WrAeVsCOKDpmmMj49jeXkZbW1tMBgM2NjYwMrKCkZHR+HxeJCfn4+ioiIUFBQovp5GOtvX1tZw7NgxWT3Os/Y3ACIj7Wy9g4m0T/5zqqBIO5ap8t0UagLNWp7AFm1dUmJdOviiayLWGo1Gsli73W7ccsstcLlc+NOf/oSsrCw5TjehoQIUqIAy1mSR8+CLsEPR19eHzs5OuN1uZGZm4qmnnsLBgwd5v3dpaWlHULFnzx74/X6sra3xlmijIbHeddh+gfr6+lBdXY3KykpBkS9pFOMKNplTHhsbQ2NjIzNmpbQUOB9kS5jdbkd7eztjNJOTk8M0rhGntdnZWQwODiInJ4dxWuNb+RdPAoEAent74XK50N7eHpNmuaz9DbAsrIv6GSmiDcgv3ACQkp62q6LNFmsu3Ig70QQ8EAjAZDKBpmm0tLRIEmuPx4Nbb70VVqsVf/7znyVtErwaoSjlbMkiw0GkiUwIdXV1MJlMWF9fx5NPPon3v//9OHPmTEjR5uoEqTLHQj8U9y4L9SRJNDk9PY0jR46I3nLDXbFJURQGBwexsrKCY8eOwWAwJMRaTGD7QmEymaDVatHe3s47NsJuWquqqoLb7WZsUkdHR5GZmcnMe5OmtXjh9XphMpmg0Whw7NixmI7BVJTkMP+eEijeXNEGhNW1geiEm6+OnZJ+5UYrVuIdTqhDoWQB50bXRKwpigo70x8On8+HD3zgA5ibm8MLL7yA3NxcuU434Un0Oezk5GSm6aytrQ0XLlzAfffdh0ceeWTH9+7duxdLS0tBn1tZWYFer5fFWpuLct5VYfD7/ejr68Pm5iaOHz8uKe3EFmwiED6fD52dnUhJSUkYsSYzyTk5OWhsbBScsk9NTUV5eTnKy8uZprWVlRVMTU0hJSUlyGltN5+/y+ViZud3eyEJEW8hws0WbUBctA2IE26hneKxEG8pYs2HUtLnv/nvhqD/DwQCjFteS0uLJEMTv9+PD33oQ5iYmMALL7wQkwtzIkP5KVB+haTEZTgPmqaD1j6z6ezsxO9///ugzz377LNoa2uLSeCheMEmF/SkpCTGFlQKRLDZ5irk7jpa57Ldwmq1wmw2o6ysDNXV1ZLPle20FggEGKc1s9kMAIxRSzROa0LY2tpCT08PioqKUF9fH7fXXmjUHa1oA+GFOxoTFTnEWy6x5hLP6Puvf/0rsrOzmb/n8fFx+P1+yWIdCARw8uRJDAwM4C9/+ctVtc9aLigoZ6yLgrjzuOuuu3DDDTegrKwMW1tbeOKJJ/Diiy/imWeeAQB87nOfw/z8PB5//HEA2x3hDzzwAO644w7cdttt6O7uxunTp/Hzn/+cOabX68Xg4CDz7/n5eZhMJmRmZjKRvFAUN9ZFURTTXUd2Yu/Zs0eQw1U4XnnlFRQWFmJ6ehplZWWora0FRVFMykTJzWUAsLCwgKGhITQ0NMRsHR9N01hfX2dS5x6PBwUFBYyAy3nHSG4+KioqFDuGFkq82aINCE+P8zE/Nif5Z4UgVLxjJdY7Hyc44tHHcOb76cePwOPxMCOQq6ur0Gg0KC4uxp49e5CXlyfqfR8IBPCJT3wCZ8+exYsvvoh9+/bF7NwTETLWdfP/GUFyijKa77yeLfziO3WCt3V96EMfwvPPP4/FxUUYDAYcPnwYd955J6677joAwAc+8AFMTU3hxRdfZH7mzJkzuP322zEwMICSkhLceeedOHnyJPP1qakpVFZW7nisa6+9Nug4QlCcYNM0Da/Xi7m5OQwNDaGurg7l5eVRH/fMmTNwu91oampCSUkJs8Na6VE1GXOanZ3FkSNHkJcXm2UHfI9rt9sZsxa73S5b09rS0hIGBgZQX1+fEBc9PuHmijYgXLjttmAP8o01m6TzEgufeO+WUG8/Vvj0pJziza5bUxSF3t5euN1uVFRUwGazYW1tDT6fD/n5+Yw1cLjOYYqicPvtt+P555/HX/7yF+zfv1+2c71aIIL97k8NI0khgu3zbOGX361X12vGCoqiMDQ0hIWFBbS0tERdHyKjQm63G/v370dJSUnC1KuJ69r6+rrsY06R0Gg0yMrKQlZWFqqqquByuZgohTStEfEW07Q2MzOD8fFxHD58OGG2h/GlzLnpcSB8ipwr0mwMBdsNS7EWbpI2J8KtJLEGAD/LbU0u8aYoCn19fXC73WhtbUVSUhL27t0bdEM6Pz+PoaEhZGVlMdkk9t80RVG488478ac//QkvvviiKtYRILagSkAp5yEXissDu91ubGxsoKOjI2qxJivyrFYr8vPzJa3FjBfk3J1OJ9rb23dVrPlIS0tDeXk5Wltbce2116K8vBxbW1s4f/48zp49i5GREdhstpBdmTRNY3R0FJcvX0Zra2vCiDWXipIc5oNtrkIgXeR2myPoQwiGglxGvGNJSnoatDrdrtWShYg1F7/HGyTgYiDRNRFrl8vFiDWB3JBWVVWhvb0d11xzDVO3vHDhAl5++WV88pOfxC9+8Qt8/vOfx29+8xs899xzqKqqknRO4XjooYdQWVmJ1NRUtLa24qWXXgr5vS+//DJOnDiB/Px8pKWlob6+Ht/73vd2fN+TTz6JgwcPIiUlBQcPHsRTTz0l+3mHggoEFPVxNaG4CDsjIwPHjx+PWkwdDgcuXbrEHG9oaAgbGxtwu91ITU1VtFg7nU4Yjca4dE4LISkpCSUlJUy2wmKxMOYzAJiO87y8PGZT2uDgIJMpuBqcoBYXFzExNAhL1o2o37sR9LWT/5yKe0+JX71JiHXEzfYNZ4t2LNzMpIg1G7FRN1us+/v74XQ6d4g1HykpKczfNEVRWF5extbWFu68805YLBZce+21OHPmDLKysmQ1w/jFL36B//iP/8BDDz2EEydO4JFHHsENN9yAwcFB3lJgRkYGPv7xj+Pw4cPIyMjAyy+/jH/9139FRkYGPvKRjwDYdt+6+eab8dWvfhX/+I//iKeeegrvfve78fLLL+P48eOynXsoKIpW0By2Ms5DLhRXwwYQsoVeKBaLBSaTCfv27cOBAwdAURRsNhsmJiawsbEBg8HALM5QmoHI+vo6TCYTiouLceDAAUXfWHChKIpxWltZWYHP50NeXh6zXaylpeWqWIgwOzuLsbExHD58GAUFBfjl+XSsb9LoOLC543vvPWWJ6rHkFm3Bm7lkEO9oxTococT76cePMGLtcDjQ2toqabKEpml861vfwkMPPYRHHnkEY2Nj+P3vf49XX30VAwMDqKuri/YpAACOHz+OlpYWnDp1ivlcQ0MD3v72twuyzwSAd7zjHcjIyMCPf/xjAMDNN9+Mzc3NoC1Tb37zm5GbmxvUvSw3pIZ900fNiqph//bUEbWGHUs0Go3kwfuZmRmMjIygoaEB+/btY1Lgubm5OHbsGDweT9DWK1KLLSoqQkZGRlwFcnl5GQMDA5K3U8UbrVaL3Nxc5Obm4sCBA7Barejv72d+B/39/Uz0nYhrP8na1enpabS0tCAnJwcA8O52JwDgl+cNO4T70x/Nj0q05Yq2hQo1IdrIO5ZiDfBH3k8/fgQ0TWNgYAB2ux1tbW2Sxfp73/seHnjgATz//PNobm4GAHz2s5/F6uoqCgoKZHkOXq8Xly5dwmc/+9mgz19//fV45ZVXBB3DaDTilVdewde+9jXmc93d3Tu2Qr3pTW+Kaq2jGNQaduxQpGBLgaIojIyMYGFhAa2trcjNzeWtV6ekpKC0tBSlpaVBBiKTk5NITU1lxDs7O3vXxJtYpF6+fBmHDh1K2PouG5fLhaGhIcbvnX2jxG5aU8KNkhBomsbY2BgWFxfR1tbGa97z7nYnfnk+HedGs3eI9q9e0GN6ZFny40cj3GLFmotY8Y61WHPxe7x49hfHGLHe2tqKKrJ+4IEH8N3vfhd/+tOfGLEmyPneXFtbQyAQ4PWi5rpncSktLcXq6ir8fj/uvvtufPjDH2a+FsrfOtIx5YICBYpWiHEKlHEecnFVCLbP54PZbIbb7UZnZydSU1MFNZdxDUSIeJO9uERQYun+RbrYV1dX0dbWdlWkbTY2NmA0GlFSUoLa2lpoNBqmaa28vBxerzfoRiklJYV5rQ0Gg+LEm6ZpDA4Owmq14tixY4xvOx9s0QbACPdr2lLxrtfvvnBHK9ZciHiHEu7dFmvmcf/2O9rY2EBbW5uk0gtN0/iv//ov3HPPPfjjH/+I9vb2GJzpTvi8qCO9B1566SXY7XacO3cOn/3sZ1FTU4NbbrklqmPKBeWnQWmVIZSUX42wY46YlLjT+f+3d95xTZ1tH/8FkKUCgoiICojIVEZAGZWWVnEABq0VOxytbbWPtvC0fWx9qlbr697aOmprqVopZbh9VRyIipUSCKIyRAUpIGHICBBCkvP+wXtOiYJiBknw/n4+/MHJnZP7HML53eO6rl8TuFwujIyMMHr0aOjp6clVuUxXVxdWVlawsrKCVCp9qvoXLSgvWmzhWYjFYty8eRMtLS0YM2aMVi4TP0lVVRVu3rwJBweHTtNf9PX1Owxao+uJ06k1dNCaOqEjjRsbG+Hr69ulvxG9RP7jeSMZ4S6v74NXfACgbfajqHA/T7SVLdbt6WjWrS6xPvu7DxPUyGaz5RbrmJgYfPvttzh58iQCAgJU0FNZ+vfvD11d3Q5rUT/PVpYuxDFy5EhUVFRgxYoVjGB3Vt9aGVa1XUHba4lrMhop2F2lpqaGmcmNGDECwD8WmiwWS+4RpY6ODlNMwcXFhan+lZubC7FYjP79+zOWlfIKilAoRFZWFgwMDODr6ytXmURNg67G5urq2uVIWl1dXWYwJJVKUVtbi8rKSuTl5TGFLeh7rUpTkI4Qi8XIzs6GWCyWaz/043HN+PF8W1AjvUzeJtq06Csm3M+abatSrJ9Et5ee3ClYinL2dx/k5ubi8ePH8PHxkWvQS1EUfvvtN3z99dc4duwYgoKCVNDTp9HX1webzUZycjKmTp3KHE9OTgaHw+nyeZ6sde3v74/k5GSZfexz5851yyAEgIw9sbrRlH4oC61VifaV0IYMGcIsgdNWmsqCxWLJBFLV19eDz+ejsLAQt27dkhHvrgpKfX09srKyYGlpCWdnZ40vi/o8KIpCUVERioqK4OnpKXf+vI6ODszNzWFubo4RI0ZAIBAwBiW3b99Gv379mGItql6NaG1tRVZWFnR0dMBms+UeUD0p2gBgO7DtIfKKjyGuZghh66Q84e5OoaZRp1jn5eWhpqZGIbGOj4/H559/joSEBLz++usq6GnnfP7555g1axZ8fHzg7++PH3/8EQ8fPmRKWz5Zu/qHH37A0KFD4ezsDKAtL3vTpk349NNPmXNGRUUhKCgI69evB4fDwbFjx3D+/HlcvXq1W65Jk/KfNaUfykIjBftZM2OKopCfn4/S0lJ4e3vD3Ny824qhsFgsmJqawtTUFMOHD2f8pouLi3H79m2Ym5szgtLZslxlZSVycnIwbNgw2Nraatx+7YtC/z0qKio6DcaSh/aV1hwcHNDc3Aw+n4+Kigrk5+ejb9++zL1WdtBaS0sLMjMzYWRkhJEjRyq8LN9etAGg+JGOjGgDUIpw6xsZQN/IAI21DQr190VQt1hXV1eDzWbLPYA7evQoFi5ciLi4OEycOFHJvXw+kZGRqK6uxnfffYfy8nK4u7vj9OnTzHZSeXk5Hj58yLSXSqVYsmQJHjx4AD09PTg4OGDdunWYP38+0yYgIAC///47li5dimXLlsHBwQFxcXHdkoMNkChxVaKRedhisVjGu7r98ezsbDQ1NcHb2xvGxsYaU7mMFhQ+n99prjedv+vm5tZt+0mqRCKR4NatWxAIBPD29u62nHaRSMSUSa2uroahoSGTLqZo0FpzczO4XC7MzMzg6uqq9NWP9sJNizbN1QzZsqbPEu7mxqYufZ4qxVudYp2fn88Easr7vTt58iTef/99HDp0SGZJmiAfdB726zOvQE9fvZUZacQiAS7+PrbH5GFrjWA3NTUhMzMTBgYG8PDwgJ6eHuO2pch+tSpoaWlhxPvx48fo06cPdHR00NjYCC8vLyZ/V5uhI/OlUik8PT3ltj1VFDpojXYY09HRkam09iKCKxAIwOVyYWVlBScnJ5V9p54l2gBwKrltT9q0X1u7vMwHCn+mMoVbXUINtIl1QUEB+Hy+QmJ95swZzJo1C/v370dkZKSSe/lyQgt28IxUjRLsS38EEcFWJRKJBGLxP2kjjx8/RmZmJqytrZkKQ3QwgaaJ9ZMIhULweDw0NTWBoigYGRkxM+++fftqdN87gw6YMzQ0xKhRo9QeyU1DB63R4t3a2srYgz4vxoBORRsyZAiGDRum8r/L80Qb+Ee4acofKCePVhHxVrdY3717F48ePYKPj88z0+uexcWLFzFz5kzs2bMH7777rlb+D2oitGC/9lYK9HppiGC3CpAS/xoRbFXSXrBLS0tx584djBgxAkOHDoVEItEaD+uWlhbweDzo6OjA09MTLBZLZjbYq1evbsn1ViYCgQBZWVkwNzdX2KNclVAUhYaGBuZeNzY2wtzcnEkZa7/nWVNTAx6Ph+HDhyvFyvVFoIW7q6INKE+4gRcTb3WLdWFhIVO4Rl6xTk1NxVtvvYXt27fj/fff14r/OW2BFuygaRc0SrBTk94ggq1KJBIJWltbUVBQgJKSEibymBZrTZ9VA/8Im5mZGdzc3J4SNqlUKiPedP6xsnO9lUltbS0zC3VwcND4v0F7mpqamEprdXV1TNCarq4u7t69CxcXFwwaNEht/fvxvNELiTZNd4m3Joh1WVkZfHx85DaPSUtLw7Rp07BhwwbMnz9fq76/2gAt2K9EXIBeL80w+BG3NuLqUSLYKoWusUsHM/Xu3VurxLqmpgbZ2dldFrb2S7l8Ph8SiYQRbwsLC41Ycubz+bh165bW1jlvDx20VlJSgoaGBhgYGMDa2hqWlpZqr7TWmXA/S7QB1Qq3usX63r17KC0tVUis//rrL3A4HKxatQqLFi3S+GeINkILdkDYOY0S7LSTIUSwVUlpaSnu378PDw8P9OrVi0nEV3ckeFegi4fIO2OjKIrJ9ebz+RAKhXLleiuTv//+GwUFBXB3d8eAAQO6/fNVwcOHD1FYWAh3d3dQFMVEnSsStKYs5J1tA8oVbgCoq1DMbUwRzsX54t69e/j777/BZrPl9oTPyspCWFgYli5dis8//1zjnyHaCi3Y/qFnNEqwr5+aSARblUilUrS0tICiKK0JLqMoCvfu3UNJSQk8PDxgbm6ulHPSud58Ph8CgYDJ9R4wYIDKI7MpisL9+/fx8OFDeHp6ol+/fir9vO6AvqaSkhJ4eXnB1NSUeY22YaWXziUSiUylte6uRnf2Vse5/M8TbRp5xbulUfjUMaFAfn9vefjfw94oLi7Gw4cP4ePjI7dY5+TkYPLkyfjyyy/x9ddfa/QzRNuhBdt3fAJ09TRDsCXiRvyVPJ0ItioRi8UQCv95aGjifm57pFIpbt++jdraWnh5ecn9cHkeTU1NjHjT/xxWVlawtLRUeg40bUpSVVUFb29vlV1Td0IXeeHz+c+9ps6C1p5XGEfZKCraQNeEuyOR7gxVi/eyRUKm1OawYcMwePBguQand+7cwaRJk7Bw4UJ8++23RKxVjFAohL29fbe5gnWVgQMHMm6M2o5GCvacOXNw7949REREYMqUKbCxsdHYf7bW1lbweDwmH7m7HuRCoZCZCT5+/JgJoqLtKhVBIpHg5s2bEAqF8PLy6hFfdKlUKmMQ8aIDHHqwVFlZyYzW6aVzRe/381CGaANPC/eLiHRHqEK4z8X54v79+yguLsbAgQNRX1+PhoYGmJqaMhH+Xbnf+fn5mDRpEt5//32sWbNGY58fPQ2hUAiRSH0xDx2hr6/fI55hgIYK9t9//42EhAQkJSUhLS0NPj4+4HA44HA4GlXOs6mpCVlZWejTpw/c3d3VFhzW3q6yurpaoVxvkUjEuGZ5enqqZc9c2UgkEuTk5KC5uRne3t4KD6pob+/KykrU1NTAyMiIEW9V+ah3JtrcOxI8Kq3v8LWOqK8RAABqyqqU0i9AecJ9Ls6XqUnPZrOZMrdCoZD5ftfU1MDY2JgR746CBO/du4eJEydi5syZ2Lhxo8av0BEIXUUjBZuGoiiUl5fjyJEjSEpKQmpqKkaNGsWI9/Dhw9Um3rW1teDxeLC2tsaIESM0ZhAhFotRXV2NiooKVFVVMbneVlZWz42Abm5uRmZmptoHIMpELBYzKyBeXl5KH4DQ95vP56Oqqgq6urqMePfr10+pYtGZaAMdz7Zpce4MZYo2oJhwn4vzRXFxMe7fvw82m93pfiN9vysrK1FV1dZ/S0tL1NTUwMPDAzU1NZg0aRLCw8OxY8cOlYj1rl27sHHjRpSXl8PNzQ3btm3D2LFjO2yblJSE3bt3g8fjoaWlBW5ublixYgUmTJgg027btm3YvXs3Hj58iP79+2P69OlYu3Ztj5kZEpSDRgt2eyiKQlVVFSPeFy9ehLOzMyPeLi4u3SaaFRUVuH37tsanOEkkEsbXm871pmfeT4pJQ0MDMjMzVV6WszsRiUTIysqCnp4ePD09VT4AoYPW6PstkUhkKq0pI2jtWaIdG1ci1znVLdzn4nzx8OFD3Lt375li/SRSqRR1dXWorKzEvHnzkJOTA0tLSzg4OCA2NhY2NjbydP+ZxMXFYdasWdi1axcCAwOxd+9e/PTTT7hz506HRXeio6MxaNAgBAcHw8zMDL/88gs2bdqEGzduwMvLCwDw22+/Yd68edi/fz8CAgJQUFCAuXPnIjIyElu3blX6NRC0F60R7PZQFIXHjx/j+PHjSExMRHJyMuzt7cHhcBAREQF3d3eVjKwpimJmASNHjoSlpaXSP0NVPCvXW0dHBzk5ObCzs4OdnV2PEGuhUIjMzEz07t0bI0eO7PZlUTo9j44zaGpqUjhoTSqV4tatWyjX8e20jbyiDahHuNuLtbe3t0zU/otQWlqKGTNmMLEJ6enp8PHxwZo1a5RqmTlmzBh4e3tj9+7dzDEXFxdERERg7dq1XTqHm5sbIiMjsXz5cgDAokWLkJubiwsXLjBtvvjiC6Snp+PKlStK6ztB+9FIe83nwWKxYG5ujrlz52Lu3Lmoq6vDyZMnkZiYiDfeeAPW1taMeHt5eSnlYU1HTdMOQdqWItDea9rJyYnJ9c7NzYVIJIKJiQkMDQ0hkUi6PX1J2TQ1NYHL5aq1fGpHVqyVlZUoKytDXl4eTExMZOxBn4dUKsXNmzfR3NyMYHYD9PX1O5xtvx05RG7RNh/UH4DyhNuwT9t1dSbc5+J8UVJSorBYV1RUIDw8HD4+Pvj111+hq6sLPp+PU6dOKbVuAF3Q6euvv5Y5HhISgrS0tC6dQyqVoqGhQSbt85VXXsGhQ4eQnp6O0aNH4/79+zh9+jTmzJmjtL4TegZaOcN+FgKBAKdPn0ZiYiL+93//F+bm5pgyZQoiIiLg6+sr17KoWCzGzZs30dLS0mOipgGguLgYhYWFGDFiBEQiEfh8PhobG5ncY0tLS7W5cMkLvbRvbW0NR0dHjVwtaB+0Vl1dDWNjY+Z+dxS0Rkfti0QieHt7y+zDq2KJnEaVM+5zcb5MQR5vb2+5HeyqqqowefJkuLq64vDhwyodbJaVlcHGxgbXrl1DQEAAc3zNmjX49ddfkZ+f/9xzbNy4EevWrUNubq7MYGLnzp344osvQFEUxGIxPvnkE+zatUsl10HQXnqcYLenqakJZ8+eRWJiIk6dOoXevXsjPDwcERER8Pf379I/N+1MZWBggFGjRmn97BNoW669e/cuysrKnioe8mSut5mZGbPvrekDFbrWuTYt7YvFYlRVVTFBVE8GrVEUBR6PB4lE8syguc6EW9NEGwCO/+zKiLWXl5fcBXlqamoQGhqKYcOGIS4uTuWDS1qw09LS4O/vzxxfvXo1Dh48iLy8vGe+PzY2Fh9++CGOHTuGcePGMcdTUlIwc+ZM/M///A/GjBmDwsJCREVF4aOPPsKyZctUdj0E7aNHC3Z7hEIhzp8/j6SkJBw7dgx6enoIDw/H1KlT8corr3T4IKyvr0dWVhYsLS3h7OzcI9JD6CIvdXV18PLyeuZyrCpzvZVNVVUVbt68qfGBgM+ifdAan8+HVCoFi8WCvr4+vL29uzRg6ki4uXckKMgpU6hvyhLu4z+7orS0FPn5+QqJdW1tLcLDwzFw4EAkJSV1S/0DkUgEY2NjxMfHY+rUqczxqKgo8Hg8XL58udP3xsXF4f3330d8fDxCQ0NlXhs7diz8/PywceNG5tihQ4fw8ccfQyAQ9IjnDkE5aP90sYsYGhoiLCwMYWFhaG1txaVLl5CYmIgPPvgAEokEoaGhiIiIwGuvvQYDAwP88ccfkEql8PPz06jcb0UQi8XIzs5Ga2srfH19n/uQMzQ0xJAhQzBkyBDGMIPP5+PevXvo3bs3I959+vRR6/2pqKjArVu34OrqCmtra7X1Q1F0dHRgYWEBCwsLODg4ICMjgzG9uXbtmow9aGd/uwnubRXC2gs321UXQFtde3mFW9H97eM/uwJom6Xm5+crVOq2vr4e06ZNg4WFBRITE7utWJG+vj7YbDaSk5NlBDs5ORkcDqfT98XGxuKDDz5AbGzsU2INtK1qPSnKurq6oCgKL8l8itBFXpoZdmeIxWJcvXoV8fHxOHr0KBobG8Fms5GWlobt27fjvffeU3cXlUJLSwuysrLQq1cveHh4KLS0Ty/j0rnH+vr6jHh3t9sVvbSqbVH7z6K1tRWZmZnQ19fHqFGjoKury9SUr6ysZMrS0kvnz/KGbi/c3DsSAPKLdnu6Kty0UANAeXk5cnNz4enpKXetfYFAgGnTpkFfXx8nT56U2xdbXui0rj179sDf3x8//vgj9u3bh9u3b8PW1hZLlixBaWkpDhw4AKBNrGfPno3t27dj2rRpzHmMjIyYragVK1Zgy5Yt+PHHH5kl8U8++QRsNhtxcXHden0EzealF+z2iEQizJo1CydOnMDw4cNRVFSEiRMngsPhICQkROOWgbtKY2MjsrKyYGpq2qE3tyK8SK63sikqKsKDBw+UZraiCdCRyMbGxp2mo9FBa3Tlr969ezPi3VllO1q4adEGVCvc7YUa+EesPTw8YGFhIddnNTU1Yfr06ZBKpTh9+rTa6tvv2rULGzZsQHl5Odzd3bF161YEBQUBAObOnYuioiKkpKQAAF577bUOl8rnzJmDmJgYAG0DYHofvLS0FJaWlggPD8fq1avlDsYj9EyIYP8/UqkU06dPx+3bt3H69GnY29vjr7/+QkJCAo4cOYLy8nKEhISAw+Fg0qRJTNlETaeurg5ZWVkYNGiQyqOmO9qDVYWvN0VRKCwsRGlpKby9vbUuxa4zWlpawOVymUpzXRnsPLnaoaenx0ScdzRgWvOH7MqKskX7SaEGgEePHuHOnTsKibVQKERkZCQEAgHOnj3bY/7mBMKLQAS7Hb/++ivCwsKeeqhIpVLweDxGvIuKivDGG2+Aw+EgNDS025eBuwodiOXg4ABbW9tu/WyKolBXV8eIt0gkkvH1lndJnqIoGRcxbV31eBKhUAgulwtTU1O4urrKtTIhlUplVjvoARNdaa39gEnZwh2zquN8Zzq+wMPDA/3795fr3C0tLXj33XdRWVmJc+fO9QibVwJBHohgvyAUReH27duMOUleXh6Cg4MRERGB0NBQWFhYaIR4l5WVITc3F25ubhg4cKBa+0JRFAQCASPe8uZ605W+Ghoa4O3trXRLUXXR3NwsU+hFGd8fesBEL50LhUKZSmv0PVdUuDsTauAfsR41apTc8QWtra2YPXs2iouLceHCBbln6ARCT4AItgJQFIWCggIkJiYiMTERN2/exNixY8HhcDBlyhQMGDCg28WboijG8UhT93bpql8vkutNFw9paWmBt7e31hV06Qy6KpulpaVKa7h3FLRGi7exsbGMcD9PtJ8l0jR8Ph85OTkKibVYLMYHH3yAvLw8XLp0qccEFRII8kIEW0lQFIX79+8jMTERSUlJyMjIQEBAAKZMmQIOh4NBgwapXLwpikJ+fj4qKirg7e2tFfvsQqGQmXnX1tYyJTvbRz/TnuMAeozlJ9AmolwuF1ZWVt3q+Ebn19P2oO2D1r4/888Ar71wd0WkaSorK3Hz5k2MHDlS7tKgEokE8+fPR1ZWFi5duqT2VSICQRMggq0CKIpCSUkJI97Xr1+Hr68vUyJ16NChSn84SyQS3Lp1CwKBQGuXi9vneldXV6N3796wsLBAZWUlDA0Nu8Vxq7sQCATgcrmwsbGBg4OD2rZRWltbZSqt9erVC5aWllj3mzn2r+z/wnvptFi7u7vDyspKrj5JJBJ8+umnuHbtGlJSUlTiukUgaCNEsFUMRVEoKytjbEGvXLmCUaNGISIiAhwORykPa3oGSlEUPD09e8RysVgsRllZGQoLCyGVSmFoaKi2XG9lU19fj8zMTAwdOhTDhg1Td3cYngxaoyiKCRTsSpR/VVUVsrOzFRJrqVSK6OhoXLx4EZcuXer2YEkCQZMhgt2NUBQFPp+Po0ePIikpCZcuXYKzszMj3s7Ozi8sRHStc0NDQ6bIRk+gsbERmZmZ6N+/PxwdHWWERFdXlxFvMzMzrSrdWFdXh8zMTNjb28POzk7d3emUJ6P8W1paYGFhwUSdPzkopDMSXF1d5V6+lkqlWLx4MU6ePImUlBSNGswQCJoAEWw1QXt6Hzt2DImJiTh//jyGDRvG2IJ2pcCJQCBAVlaWWm0kVQE9A7WxscHw4cNlBjFP5npTFMXsv5qbm2v0gIU2J3FwcMDQoUPV3Z0uQ1GUTKBgQ0MDE7Q2YMAANDU1ITs7W2GxXrp0KeLj45GSkgJHR0clXwWBoP0QwdYQ6urqcOLECSQmJuLs2bOwsbFhxNvT0/MpMaYf/kOGDFHrHqiyefz4MXg8XpdmoO1ngRUVFWhtbVVKrrcqqKmpAY/H02pzEpr2pjA1NTUAAEtLSzg4OMhVV56iKHz33Xf49ddfkZKSAmdnZ1V0m0DQeohgayANDQ0ynt79+/dnnMV8fX1x+PBh5OTkYNGiRVr/8G9PZWUlcnJyMGLECAwePPiF3kvneldUVIDP56O5uRnm5uawsrJC//791bqvX11djezsbDg5OfWoAKqamhpkZWXB2tqaqbjWq1cvJl2sK9sVFEVh3bp12LNnDy5dugR3d/du6j2BoH30jDXUHkbfvn0RGRmJP/74AxUVFdi8eTOqq6sxdepUODk54bPPPoOZmRkGDRqk7q4qjfLycty8eRNubm4vLNYAwGKx0LdvXwwfPhwBAQHw8/ODmZkZSkpKkJqaCi6Xi5KSEgiFQhX0vnMqKyuRnZ0NFxeXHiXW9EqIi4sLXF1dMWrUKLz66qtwdnaGRCJBTk4OUlNTcevWLfD5fEgkkqfOQVEUtm7dil27diE5OVllYr1r1y7Y29vD0NAQbDYbV65c6bRtUlISxo8fD0tLS5iYmMDf3x9nz559ql1tbS0WLlwIa2trGBoawsXFBadPn1ZJ/wkEGjLD1hIoisLSpUuxY8cOvP7667hy5Qr09fWZmXdgYKDW5ieXlJTg7t27GDVqlNzlK59Fc3Mzs4TbWa63KqCLhygSNa2JPH78GFlZWc9cMegsaM3Y2BgmJiawsrLC999/j/Xr1+Ps2bPw9fVVSV9pd61du3YhMDAQe/fuxU8//YQ7d+50GEcQHR2NQYMGITg4GGZmZvjll1+wadMm3LhxA15eXgDa0g8DAwMxYMAA/Pe//8XgwYNRUlKCvn37wsPDQyXXQSAARLC1hqVLl+LAgQM4c+YMXF1dIRKJGE/vo0ePQiqVIiwsjPH01obUrvZV2by8vLrFmUgkEjEiQhcNUYWvN2140ZNsP4G2mWVmZuYLbVvQQWt8Ph/x8fFYvXo1nJyc8ODBAxw6dEjGdlLZjBkzBt7e3ti9ezdzzMXFBREREVi7dm2XzuHm5obIyEgsX74cALBnzx5s3LgReXl5WjtIJmgnRLC1hLy8PPTp06fDh6RYLMaVK1cYT+/m5maEhoaCw+HgjTfe6LTcpzqhKAp3795FeXm52qqy0UVDaKcrAwMDWFlZYcCAATAxMZFbvMvKypCXl6eyFQN1QQc6Dh8+XO7YCYqisH37dvz666/o27cvk7c9depULFu2TKnBkyKRCMbGxoiPj8fUqVOZ41FRUeDxeB3aXj6JVCqFnZ0dFi9ejEWLFgEAJk+eDHNzcxgbG+PYsWOwtLTEO++8g6+++kqjsxQI2o/mhNESnsmzImf19PQQHByM4OBg7Ny5E2lpaUhISMCXX36J2tpaTJgwAREREQgJCVHpEnBXoSgKd+7cQU1NDXx8fNTmuNWrVy9YW1vD2toaEokE1dXV4PP5yMzMlDvX+++//0ZBQYFCVpKaCG3TqqhYHzp0CGvXrsXx48cRHByMx48f49SpU7h165bSMx2qqqogkUie2o6wsrLCo0ePunSOzZs3o7GxETNmzGCO3b9/HxcvXsS7776L06dP4+7du1i4cCHEYjEzCycQVAGZYfdgpFIp0tPTGVvQiooKjB8/HhEREZg4caJaZrVSqRQ5OTlobGyEt7e3Rs7+6VzviooKpuJXe1/vzsS7pKQEhYWF8PT07FEWkHSxF0XyxymKwh9//IFPP/0UiYmJmDBhgpJ7+TRlZWWwsbFBWloa/P39meOrV6/GwYMHkZeX98z3x8bG4sMPP8SxY8cwbtw45viIESMgFArx4MEDZka9ZcsWbNy4EeXl5aq5GAIBZIbdo9HR0YGfnx/8/PywYcMGZGVlISEhAWvWrMGCBQswbtw4cDgcTJ48uVvKfUokEmRnZ6O1tRU+Pj4au8+uo6MDCwsLWFhYgKIo1NbWgs/nIy8vj8n1trKygoWFBZPrXVxcjPv373fbXnx3QRexGTZsmELFXo4cOYJFixYhLi6uW8QaAOMB/uRsms/nPzcIMC4uDvPmzUN8fLyMWAOAtbU1evXqJbP87eLigkePHkEkEmns95qg/ZC0rpcEHR0dsNlsrF27Fnl5eUhPT4e3tze2b98Oe3t7vPnmmzhw4ACqq6uhikWX1tZWcLlcSKVSsNlsrXmosVgs9OvXD05OTnjllVfg4+MDY2Nj3Lt3D5cvXwaPx0N2djbu378PNpvd48Say+XC3t5eoZreJ0+exPz583Ho0CGEhYUpsYfPRl9fH2w2G8nJyTLHk5OTERAQ0On7YmNjMXfuXBw+fBihoaFPvR4YGMjUuKcpKCiAtbW11nyvCdoJWRJ/yaEtOWlP75ycHAQFBYHD4SA8PFwpnt4tLS3IzMyEkZERRo4c2WMCcwQCAfLy8lBbWwsA6NevH7PvbWBgoN7OKUhDQwO4XC7s7OwUqnl+5swZzJo1C7/88ovMPnB3Qad17dmzB/7+/vjxxx+xb98+3L59G7a2tliyZAlKS0tx4MABAG1iPXv2bGzfvl0met3IyAimpqYA2rY+XF1dMXfuXHz66ae4e/cuPvjgA3z22Wf45ptvuv0aCS8PRLAJDBRF4d69e4wtKJfLRUBAADgcDqZMmSKXp3dzczO4XC7MzMzg6uraY+qdUxSFwsJClJWVgc1mQ1dXl0kXq6ur67Zcb1VAi7WtrS3s7e3lPs+FCxfw9ttvY+/evXjnnXfUVj53165d2LBhA8rLy+Hu7o6tW7ciKCgIADB37lwUFRUhJSUFAPDaa691GD0+Z84cxMTEML9fv34d//73v8Hj8WBjY4N58+aRKHGCyiGCTegQiqLw8OFDRrz//PNP+Pr6gsPhgMPhdMnTWyAQIDMzEwMGDICTk1OPqXdOr0rw+Xyw2eynotxbWlpkam336dOHEe/evXtr9H0QCATIyMhQ2PozNTUVb731Fnbs2IG5c+dq9DUTCNoCEWzCc6E9vZOSkpCUlISrV6/Cw8ODsQUdNmzYUw9kOg1oyJAhHb6urVAUhdzcXFRXV8PHxwdGRkbPbP9krnd7X29Fcr1VgUAgAJfLxeDBg+Hg4CD3edLS0jBt2jRs2rQJH330kUZdI4GgzWj1+uSL1AgGgB9++AEuLi4wMjKCk5MTs29FExMTAxaL9dRPd9ef1jRYLBZsbGzw6aef4uLFiygpKcGHH36I1NRUsNlsBAQEYP369cjLywNFUTh58iQ2bdoEe3v7HuUk9mT++PPEGvgn19vDwwOvvfYaHB0dmT39K1euIC8vDzU1NSoJ9HsRGhsbweVyYWNjo5BYp6enY/r06VizZg0RawJByWhtWldcXByio6NlagRPmjSp0xrBu3fvxpIlS7Bv3z74+voiPT0dH330Efr164fw8HCmnYmJCfLz82Xeq4m5wuqCxWJh4MCBWLBgAebPn4+amhrG03vdunWwtbVFSUkJoqKiepSTmFQqxe3bt9HQ0AAfHx+5vhPti7FIpVLU1NQw9cYpimJeMzc379a9/sbGRmRkZCgs1pmZmZg6dSqWL1+OhQsXErEmEJSM1i6Jv2iN4ICAAAQGBmLjxo3MsejoaGRkZODq1asA2mbY0dHRTNQvoetQFIW9e/ciKioKfn5++OuvvzB48GDG09vDw0NrA87oYi9NTU0qSUlrn+vN5/MhFotlfL1VGchEz6ytra0xfPhwuUX25s2bCA0NxX/+8x989dVXRKwJBBWglU9QkUgELpeLkJAQmeMhISFIS0vr8D0tLS1PzYqMjIyQnp6O1tZW5phAIICtrS0GDx6MsLAwZGVlKf8CeiA///wzFi9ejNOnT+Py5cuoqKjAd999h6KiIkycOBEjR47EkiVLkJ6eLpO/qulIpVJkZ2ejublZZfnjT+Z6s9lsGBkZobCwECkpKeDxeCgrK5P5niqDpqYmcLlcDBw4UCGxvnPnDsLDw/HZZ58RsSYQVIhWCrY8NYInTJiAn376CVwuFxRFISMjA/v372eCgoC2et0xMTE4fvw4YmNjYWhoiMDAQNy9e1fl16TtjBkzBsnJyXjjjTcAtHl6z5w5E/Hx8Xj06BE2bdqEqqoqcDgcuLi44D//+Q+uXbvWoU+ypiCRSMDj8dDa2tptxV5YLBZMTEwwfPhwBAYGYsyYMTAxMcHDhw9x+fJlZGZmoqSkBC0tLQp9Di3WVlZWcHR0lFtk8/PzERYWho8//hjLly8nYk0gqBCtXBKXp0Zwc3MzFi5ciIMHD4KiKFhZWeG9997Dhg0bUFFRgQEDBjz1HqlUCm9vbwQFBWHHjh0qvaaXhebmZiQnJyMpKQnHjx+HgYEBwsPDERERoVGe3hKJBFlZWaAoCl5eXkwJUnXS3Nwsk+ttamrK7Ht3JQCu/XkyMjIwYMAAjBgxQm6RLSwsxKRJk/D2229jw4YNWrvlQSBoC1r5HyZPjWAjIyPs378fTU1NKCoqwsOHD2FnZ4e+fft2aoGoo6MDX19fMsNWIkZGRpgyZQpiYmLw6NEj/PLLL6AoCnPmzMHw4cOxcOFCJCcnQyQSqa2PYrEYmZmZAKAxYg203TtbW1v4+vpi7NixsLa2RnV1Na5du4Y///wT9+/fh0AgeOY5aLG2tLRUSKyLiooQFhaGN998k4j1/6NNWz0E7UQrZ9hA2xIsm83Grl27mGOurq7gcDhdNqZ/9dVXYWNjg8OHD3f4OkVRGD16NEaOHIn9+/crpd+EjhGLxUhNTWU8vYVCIcLCwsDhcPD66693W6R+a2srsrKyoKenBw8PD62oXNXa2soUaqmuru4011soFCIjIwMWFhZwdnaWW6xLSkowYcIETJw4Ebt27XqpxTo2NhYCgQBvvvkmzM3NIZVKX+r7QVAtWivYL1ojuKCgAOnp6RgzZgweP36MLVu2IDk5mamXDAArV66En58fHB0dUV9fjx07duDgwYO4du0aRo8ercarfbmQSCS4du0aEhIScPToUdTV1WHixImIiIjA+PHjVVbqUyQSITMzEwYGBhg1apRWiPWTSCQSmUItenp6jKd3QUEBLCws4OLiIrdYl5eXY8KECQgKCsK+ffu08h4pCw6Hg+zsbBgaGkIkEuHPP//scGuNQFAWWjsUjIyMxLZt2/Ddd9/B09MTqampOH36NOMqVF5ejocPHzLtJRIJNm/eDA8PD4wfPx5CoRBpaWkyxga1tbX4+OOP4eLigpCQEJSWliI1NZWIdTejq6vLxA0UFRXhzJkzGDx4ML755hvY2dnhvffeQ0JCAhoaGpT2mXTmgZGRkdbMrDtCV1cXVlZWGDlyJF599VW4uLhAJBLh5s2bzDZDdXW1XMu3FRUVCA0Nhb+//0sv1jt27EBxcTFSU1Nx4sQJuLu7Y+XKlZBIJGovgkPouWjtDJvw8iGVSpGZmYmEhAQkJSWhpKQE48aNQ0REBCZPnix3qU+hUIjMzEz07dsXbm5uPWpJs6WlBRkZGTA1NcWgQYOYoDWJRPJCud6VlZUIDQ2Fm5sbfvvtN43Z11cX0dHRaGxsxL59+wAAq1atwokTJ5Cens60IcvjBGVDvk0ErUFHRwc+Pj5Yt24d8vLycOPGDXh5eWHr1q2ws7PD9OnTX9jTm97XNTU1hbu7e496wLa0tIDL5cLU1BRubm4wNzeHs7Mzxo4dC29vbxgaGjK53tnZ2SgvL+8w17umpgbh4eFwdHTEoUOHVCrWL1JuOCkpCePHj4elpSVMTEzg7++Ps2fPdtr+999/B4vFQkREhML9NDc3x6NHj1BfXw8AcHNzA5/Px8aNG7Fz5048evSoR32XCJoBmWETtB6KopCXl8fMvG/duoVXX32V8fS2tLTscOZNR0wruq+riYhEImRkZMDExARubm6dXhtFUWhsbGRm3gKBAObm5qipqYGTkxP69u2L8PBwWFtbIykpSaW56HRcSvtywz/99FOn5Yajo6MxaNAgBAcHw8zMDL/88gs2bdrEDOTaU1xcjMDAQAwbNgzm5uY4evSoQn09evQooqKicPDgQQQFBSEoKAi3bt1Cv379YGxsjNGjR2Pnzp1aZ61K0GzIEFAFpKamIjw8nPGP7srD4fLly2Cz2TA0NMSwYcOwZ8+ep9okJibC1dUVBgYGcHV1xZEjR1TQe+2DxWLBxcUFy5YtQ2ZmJnJzczFu3DgcPHgQjo6OmDx5Mvbs2YOysjJm5p2Tk4MLFy7A0tKyx4o1vcT/rGtjsVjo06cPhg0bBj8/PwQEBMDc3Bw///wzXF1d4efnh8bGRmzevFnlhWO2bNmCefPm4cMPP4SLiwu2bduGIUOGyJQfbs+2bduwePFi+Pr6wtHREWvWrIGjoyNOnDgh004ikeDdd9/FypUrFbIMbU9ERATeeOMNREZG4ubNm3B3d8fhw4fx559/4osvvsCtW7eUGmNBIABEsFVCY2MjPDw88P3333ep/YMHDzB58mSMHTsWWVlZ+O9//4vPPvsMiYmJTJvr168jMjISs2bNQnZ2NmbNmoUZM2bgxo0bqroMrYTFYmH48OH4+uuvcePGDdy9exdTpkxBUlISnJ2dMX78eKxYsQKTJk0Cl8vtUT7dwD/Bc3369HmuWHeEsbEx7OzssG/fPrzyyiuwsLCAjY0N3N3d4ePjg5iYGJX2+0XKDT+JVCpFQ0MDzM3NZY5/9913sLS0xLx585TSVzpgb/PmzRg5ciRWrFiB5cuXY+LEibC0tMQ777yD4uLiLvebQOgqL3fkiIqYNGkSJk2a1OX2e/bswdChQ7Ft2zYAbSYmGRkZ2LRpE958800AbbOJ8ePHY8mSJQCAJUuW4PLly9i2bRtiY2OVfg09ARaLBTs7O3zxxRf4/PPPUVpaip07d2Lr1q2wtbXFhQsXYGJiAg6HA3t7e60Xblr0jI2NFdqPb2pqwowZMwAAV65cQZ8+fVBTU4MTJ068UEW1F0GecsNPsnnzZjQ2NjJ9B4Br167h559/Bo/HU1pf6fvar18/zJ8/H7t370ZCQgLjUFZZWQk3NzeZDBQCQRmQGbYGcP369admFhMmTEBGRgYTBNRZGzKK7xosFgsVFRX46aefsHz5cly5cgXz5s1DSkoKvLy8EBgYiPXr1yM/P18r03JaW1uRmZkJY2NjjBw5Um6xFgqFePvttyESiXDixAn06dMHQFuQ1Zw5c2TEUBU8OWiiKKpLA6nY2FisWLECcXFxTC50Q0MD3nvvPezbt6/TaoaKwuFw4OzsjMTERHC5XDx48ADLli2DUCiEi4uLSj6T8PJCZtgawKNHjzqcWYjFYlRVVcHa2rrTNl2dfRCAhIQE/Pe//8UXX3wBAPjkk0+wYMECVFdXy3h6Ozo6YsqUKZg6dSpcXFw0Ptq3tbUVXC4XhoaGCol1S0sL3nvvPdTV1eHcuXMwMTFRck87R55ywzRxcXGYN28e4uPjMW7cOOb4vXv3UFRUJON3Ty9n6+npIT8/XyH/b4qioKenh23btmH06NEYPXo0nJ2dYWhoiDNnzsDQ0JCkdhGUChFsDaGjmcWTx+WdfRDaWLNmzVP3i8VioX///pg3bx4++OAD1NXV4fjx40hMTMTWrVsxdOhQRrxHjRqlcQ9femZNV2eTt38ikQhz5sxBeXk5Lly4ADMzM+V29Dno6+uDzWYjOTkZU6dOZY4nJyeDw+F0+r7Y2Fh88MEHiI2NRWhoqMxrzs7OyMnJkTm2dOlSNDQ0YPv27RgyZIhCfWaxWJBKpdDT00NCQgKmT58OAwMDXLlyBXp6ehCJRN3i8EZ4eSCCrQEMHDiww5mFnp4eLCwsntnmebMPwj88b3DDYrFgZmaG2bNnY/bs2aivr8epU6eQmJiIkJAQDBgwgBFvNputdvEWi8XIysqCvr4+PDw85O5Pa2srPvzwQzx48AAXL158Kmiru/j8888xa9Ys+Pj4MOWGHz58iAULFgDAU+WGY2NjMXv2bGzfvh1+fn7M/4eRkRFMTU1haGgId3d3mc+gByJPHpcX+p4PHToUixYtwq+//opTp06Bw+EQsSYoHc2aLryk+Pv7Izk5WebYuXPn4OPjw9hNdtYmICCg2/r5smFiYoK3334bCQkJqKiowIYNG8Dn8zFlyhS4urpi8eLFSEtLU4unN+0opqenp9DMWiwWY8GCBbhz5w7Onz8PS0tLJfe067xoueG9e/dCLBZj4cKFsLa2Zn6ioqK6ve96enqYMGECHBwccODAARQXF3d7Hwg9H1I4RQUIBAIUFhYCaLNn3LJlC4KDg2Fubo6hQ4c+NVN48OAB3N3dMX/+fHz00Ue4fv06FixYgNjYWCZKPC0tDUFBQVi9ejU4HA6OHTuGpUuX4urVqxgzZozarvVlpLm5GefOnUNSUhJOnDgBQ0NDGU9vVZftpGfWurq6CtU9l0gkWLRoEa5fv46UlBQMGjRIyT19+fjrr78QFhaG1NRUODk5qbs7hB4GEWwVkJKSguDg4KeOz5kzBzExMZg7dy6KioqQkpLCvHb58mX8+9//xu3btzFo0CB89dVXzFIgTUJCApYuXYr79+/DwcEBq1evxrRp01R9OYRnIBKJcP78eSQlJeHYsWNgsVgIDQ3F1KlTERQUpPRlUVqsdXR04OnpKbdYS6VSREdH49KlS7h06VKHlcQI8lFbW9vtMQCElwMi2ASCkmhtbWU8vY8dO4aWlhaEhoYiIiICwcHBCnt6SyQSZGVlgcViKSzWixcvxqlTp5CSkgJ7e3uF+kWQhQSDElQFEWwCQQVIJBJcvXqV8fSur6/HpEmTEBERgXHjxr1wjWlarIG2bRZFxPqbb75BYmIiLl26BEdHR7nOQyAQuh8i2ASCipFKpfjzzz8Z8a6srERISAgiIiIwYcIEpjhJZ0gkEvB4PEilUnh7e8st1hRFYeXKlTh48CAuXboEZ2dnuc5DIBDUA4kSfwlRhTlJTEwMWCzWUz9CoVBFV6E96OjoICAgAFu2bEFhYSEuXrwIR0dHrFq1CnZ2dpg5cyZiY2NRV1f3VJU1iUSC7OxsSKVShWbWFEVh7dq1iImJQXJyMhFrAkELIYL9EqIKcxKgLQ2qvLxc5kfRfdueho6ODnx9fRlP77S0NHh4eGDLli2ws7PDW2+9hQMHDqCmpgYCgQCzZs1CeXk5vLy85I4+pygKW7Zswe7du5GcnKy0HGQCgdC9kCXxlxwWi4UjR44gIiKi0zZfffUVjh8/jtzcXObYggULkJ2djevXrwNom2FHR0ejtrZWxT3umVAUhdzcXMbT+/bt27C1tQWLxUJCQgKGDx8uVyATRVHYuXMnNmzYwOT2EwgE7YTMsAnPpSvmJEBb/rmtrS0GDx6MsLAwJkiK8HxYLBZcXV2xfPly3LhxA0FBQWhpaYGFhQV8fHwwefJk7N27F+Xl5V02J6EoCnv37sW6detw+vRpItYEgpZDBJvwXJ5nTgK01W2OiYnB8ePHERsbC0NDQwQGBuLu3bvq6LLWIpFIEBkZibq6OuTk5OD69esoKChAeHg4EhIS4OTkhJCQEHz//fcoKSnpVLwpisIvv/yCFStW4MSJE/Dz8+vmKyEQCMqGCDahSzzPnMTPzw/vvfcePDw8MHbsWPzxxx8YMWIEdu7c2e191WZ0dXURHh6Oc+fOwczMDCwWC/b29vjyyy9x9epVPHjwADNmzMCpU6fg5uaG4OBgbNu2DQ8ePGD+JhRF4eDBg1iyZAmOHz+OsWPHqvmqCASCMiDmH4Tn0hVzkiehg6vIDPvFmTdvXofHWSwWhgwZgqioKHz22Wd49OgRjhw5gqSkJHz77bdwd3cHh8OBgYEBVq9ejaSkJLz22mvd23kCgaAyiGATnou/vz9OnDghc+xJc5InoSgKPB4PI0eO7I4uvnSwWCxYW1vjX//6Fz755BPG0/vw4cO4ePEiDh069FTcAYFA0G7IkvhLiEAgAI/HA4/HA9CWtsXj8RgnpCVLlmD27NlM+wULFqC4uBiff/45cnNzsX//fvz888/48ssvmTYrV67E2bNncf/+ffB4PMybNw88Hu+peugE5dPe0/v8+fMoKSnBu+++q9LP3LVrF+zt7WFoaAg2m40rV6502jYpKQnjx4+HpaUlTExM4O/vj7Nnz8q02bdvH8aOHYt+/fqhX79+GDduHNLT01V6DQSC1kERXjouXbpEAXjqZ86cORRFUdScOXOoV199VeY9KSkplJeXF6Wvr0/Z2dlRu3fvlnk9OjqaGjp0KKWvr09ZWlpSISEhVFpaWjddEaE7+f3336levXpR+/bto+7cuUNFRUVRvXv3poqLiztsHxUVRa1fv55KT0+nCgoKqCVLllC9evWiMjMzmTbvvPMO9cMPP1BZWVlUbm4u9f7771OmpqbU33//3V2XRSBoPCQPm0AgvBBjxoyBt7c3du/ezRxzcXFBREQE1q5d26VzuLm5ITIyEsuXL+/wdYlEgn79+uH777+XWe0hEF5myJI4gUDoMiKRCFwu96n98ZCQEKSlpXXpHFKpFA0NDTA3N++0TVNTE1pbW5/ZhkB42SCCTSAQukxVVRUkEkmHeflPZhJ0xubNm9HY2IgZM2Z02ubrr7+GjY0Nxo0bp1B/CYSeBIkSJxAIL0xHefldKZ0aGxuLFStW4NixYxgwYECHbTZs2IDY2FikpKSQWvQEQjvIDJugkbyoo1h5eTneeecdODk5QUdHB9HR0R22S0xMhKurKwwMDODq6oojR44ov/M9mP79+0NXV7fDvPwnZ91PEhcXh3nz5uGPP/7odOa8adMmrFmzBufOncOoUaOU1m8CoSdABJugkbyoo1hLSwssLS3xzTffwMPDo8M2169fR2RkJGbNmoXs7GzMmjULM2bMwI0bN5TZ9R6Nvr4+2Gw2kpOTZY4nJycjICCg0/fFxsZi7ty5OHz4MEJDQztss3HjRqxatQpnzpwhdc8JhI5Qc5Q6gfBcAFBHjhzpcvtXX32VioqKeur4jBkzqIkTJ8ocmzBhAjVz5kwFe/hyQad1/fzzz9SdO3eo6Ohoqnfv3lRRURFFURT19ddfU7NmzWLaHz58mNLT06N++OEHqry8nPmpra1l2qxfv57S19enEhISZNo0NDR0+/URCJoKmWH3MOrr69XdBY2lM9exrkY3E9qIjIzEtm3b8N1338HT0xOpqak4ffo0bG1tAbRtT9BFeABg7969EIvFWLhwIaytrZmfqKgops2uXbsgEokwffp0mTabNm3q9usjEDQVEnTWQ8jNzcXevXvx119/obKyEgsXLsTChQuhp0f+xDSduY51NbqZ8A//+te/8K9//avD12JiYmR+T0lJee75ioqKFO8UgdDDIU9zLYb6/8jc+Ph4rFu3DhRFYdu2bbhy5QpiYmIwZswYFBcXQygUYs6cOerurkYgb3QzgUAgqBuyJK7FsFgsNDc3Y/HixWCz2Th37hyCgoIQERGB/v37Y/bs2UhKSurUoONlozPXsedFNxMIBIImQARbi5FIJDh06BDKysqwbt06xuqyqakJaWlpMDIywjfffIN33nlHzT3VDPz9/Z+Kbj537twzo5sJBAJBUyBL4lpMa2srjhw5grCwMKaEY11dHc6cOQMLCwscPXoU9vb2au6lfAgEAhQWFjK/045i5ubmGDp0KJYsWYLS0lIcOHCAaUO7jwkEAlRWVoLH40FfXx+urq4AgKioKAQFBWH9+vXgcDg4duwYzp8/j6tXr3brtREIBIJcqDlKnaAgo0aNYly2pFIptWrVKsrOzo76/vvvKYqiKLFYrMbeyY88jmIdtbe1tZVpEx8fTzk5OVG9evWinJ2dqcTExO65IAKBQFAQ4tal5axatQpbt27Fu+++i4KCAuTn56O2thY8Hg92dnYkqIpAIBB6CGQPW8tZtmwZ9u3bh8rKSoSFhTE5r3Q+NhFrAoFA6BmQGXYPo6GhAR999BHs7e2xdu1aMsMmEAiEHgIR7B6ARCIBi8WCjg5ZMCEQCISeCnnC9wB0dXUZsZZKpZBIJGru0cuBKhzFYmJiwGKxnvoRCoWquQgCgaA1EMHuYejo6EBXV1fd3XgpUIWjGACYmJigvLxc5of4QhMIBJKHTSDIyaRJkzBp0qQut7ezs8P27dsBAPv37++0HYvFwsCBAxXuH4FA6FmQGTaBoGEIBALY2tpi8ODBCAsLQ1ZWlrq7RCAQNAAi2ASCBuHs7IyYmBgcP34csbGxMDQ0RGBgIO7evavurhEIBDVDlsQJBA3Cz88Pfn5+zO+BgYHw9vbGzp07sWPHDjX2jEAgqBsywyYQNBgdHR34+vqSGTaBQCCCTSBoMhRFgcfjwdraWt1dIRAIaoYsiRMIcqIKR7GVK1fCz88Pjo6OqK+vx44dO8Dj8fDDDz9067URCATNg1Q6IxDkJCUlBcHBwU8dnzNnDmJiYjB37lwUFRUhJSWFea2jMrG2trYoKioCAPz73/9GUlISHj16BFNTU3h5eWHFihXw9/dX1WUQCAQtgQg2gUAgEAhaANnDJhAIBAJBCyCCTSAQCASCFkAEm0AgEAgELYAINoFAIBAIWgARbAKBQCAQtAAi2AQCgUAgaAFEsAkEAoFA0AKIYBMIBAKBoAUQwSYQCAQCQQsggk0gEAgEghZABJtAIBAIBC3g/wBadzv2WmlHVwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "#Here starts the main program with variable declarations\n", "NumberParticles = 2\n", @@ -2721,9 +2484,35 @@ "save_fig(\"QdotMetropolis\")\n", "plt.show()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "09e0464c", + "metadata": {}, + "outputs": [], + "source": [] } ], - "metadata": {}, + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.10" + } + }, "nbformat": 4, "nbformat_minor": 5 }