diff --git a/doc/HandWrittenNotes/2024/NotesJanuary26.pdf b/doc/HandWrittenNotes/2024/NotesJanuary26.pdf
new file mode 100644
index 00000000..637a026a
Binary files /dev/null and b/doc/HandWrittenNotes/2024/NotesJanuary26.pdf differ
diff --git a/doc/pub/week2/ipynb/Results/FigureFiles/QdotMetropolis.png b/doc/pub/week2/ipynb/Results/FigureFiles/QdotMetropolis.png
index 771e93ca..3b50b24f 100644
Binary files a/doc/pub/week2/ipynb/Results/FigureFiles/QdotMetropolis.png and b/doc/pub/week2/ipynb/Results/FigureFiles/QdotMetropolis.png differ
diff --git a/doc/pub/week2/ipynb/Results/FigureFiles/VMCHarmonic.png b/doc/pub/week2/ipynb/Results/FigureFiles/VMCHarmonic.png
index 193731cf..fef8f901 100644
Binary files a/doc/pub/week2/ipynb/Results/FigureFiles/VMCHarmonic.png and b/doc/pub/week2/ipynb/Results/FigureFiles/VMCHarmonic.png differ
diff --git a/doc/pub/week2/ipynb/Results/VMCHarmonic/VMCHarmonic.dat b/doc/pub/week2/ipynb/Results/VMCHarmonic/VMCHarmonic.dat
index 73c797c0..22706f5e 100644
--- a/doc/pub/week2/ipynb/Results/VMCHarmonic/VMCHarmonic.dat
+++ b/doc/pub/week2/ipynb/Results/VMCHarmonic/VMCHarmonic.dat
@@ -1,20 +1,20 @@
-0.450000 1.282801 2.736479 0.001654
-0.500000 1.070395 1.790885 0.001338
-0.550000 0.896756 1.136259 0.001066
-0.600000 0.795474 0.759713 0.000872
-0.650000 0.708003 0.492106 0.000702
-0.700000 0.626093 0.289718 0.000538
-0.750000 0.585422 0.188462 0.000434
-0.800000 0.549600 0.105289 0.000324
-0.850000 0.526104 0.054113 0.000233
-0.900000 0.511764 0.022914 0.000151
-0.950000 0.502559 0.005346 0.000073
+0.450000 1.180614 2.365134 0.004863
+0.500000 1.102708 1.897733 0.004356
+0.550000 0.894354 1.098958 0.003315
+0.600000 0.803621 0.810480 0.002847
+0.650000 0.704845 0.474894 0.002179
+0.700000 0.641836 0.314429 0.001773
+0.750000 0.588947 0.195473 0.001398
+0.800000 0.554685 0.108195 0.001040
+0.850000 0.529034 0.056878 0.000754
+0.900000 0.509911 0.022084 0.000470
+0.950000 0.503576 0.005542 0.000235
1.000000 0.500000 0.000000 0.000000
-1.050000 0.502264 0.004824 0.000069
-1.100000 0.507897 0.018838 0.000137
-1.150000 0.519439 0.040009 0.000200
-1.200000 0.533679 0.069712 0.000264
-1.250000 0.550477 0.104797 0.000324
-1.300000 0.569137 0.152385 0.000390
-1.350000 0.593459 0.202036 0.000449
-1.400000 0.617045 0.263452 0.000513
+1.050000 0.502961 0.004645 0.000216
+1.100000 0.510123 0.017847 0.000422
+1.150000 0.519669 0.040372 0.000635
+1.200000 0.536026 0.070729 0.000841
+1.250000 0.548244 0.107160 0.001035
+1.300000 0.572471 0.158318 0.001258
+1.350000 0.601695 0.195857 0.001399
+1.400000 0.622979 0.258030 0.001606
diff --git a/doc/pub/week2/ipynb/Results/VMCQdotMetropolis/VMCQdotMetropolis.dat b/doc/pub/week2/ipynb/Results/VMCQdotMetropolis/VMCQdotMetropolis.dat
index 39b6b233..5889caf8 100644
--- a/doc/pub/week2/ipynb/Results/VMCQdotMetropolis/VMCQdotMetropolis.dat
+++ b/doc/pub/week2/ipynb/Results/VMCQdotMetropolis/VMCQdotMetropolis.dat
@@ -1,100 +1,100 @@
-0.925000 0.210000 3.058097 0.105978 0.000326
-0.925000 0.220000 3.052278 0.097440 0.000312
-0.925000 0.230000 3.046877 0.087795 0.000296
-0.925000 0.240000 3.044738 0.078956 0.000281
-0.925000 0.250000 3.038550 0.071594 0.000268
-0.925000 0.260000 3.034932 0.063791 0.000253
-0.925000 0.270000 3.031160 0.057386 0.000240
-0.925000 0.280000 3.028016 0.051525 0.000227
-0.925000 0.290000 3.024914 0.046224 0.000215
-0.925000 0.300000 3.021712 0.041399 0.000203
-0.950000 0.210000 3.047195 0.085256 0.000292
-0.950000 0.220000 3.041758 0.076677 0.000277
-0.950000 0.230000 3.036015 0.068651 0.000262
-0.950000 0.240000 3.032091 0.061108 0.000247
-0.950000 0.250000 3.028652 0.053903 0.000232
-0.950000 0.260000 3.025396 0.048170 0.000219
-0.950000 0.270000 3.020230 0.042311 0.000206
-0.950000 0.280000 3.020164 0.037303 0.000193
-0.950000 0.290000 3.016998 0.032503 0.000180
-0.950000 0.300000 3.014804 0.028263 0.000168
-0.975000 0.210000 3.035948 0.068976 0.000263
-0.975000 0.220000 3.031029 0.061214 0.000247
-0.975000 0.230000 3.026740 0.053339 0.000231
-0.975000 0.240000 3.024947 0.046741 0.000216
-0.975000 0.250000 3.019452 0.041329 0.000203
-0.975000 0.260000 3.017881 0.035878 0.000189
-0.975000 0.270000 3.014119 0.030955 0.000176
-0.975000 0.280000 3.011407 0.026870 0.000164
-0.975000 0.290000 3.011609 0.022713 0.000151
-0.975000 0.300000 3.008949 0.019390 0.000139
-1.000000 0.210000 3.026702 0.056188 0.000237
-1.000000 0.220000 3.023134 0.049286 0.000222
-1.000000 0.230000 3.019449 0.042802 0.000207
-1.000000 0.240000 3.016844 0.037026 0.000192
-1.000000 0.250000 3.012968 0.032259 0.000180
-1.000000 0.260000 3.011597 0.027690 0.000166
-1.000000 0.270000 3.009589 0.023437 0.000153
-1.000000 0.280000 3.007846 0.019928 0.000141
-1.000000 0.290000 3.006022 0.016764 0.000129
-1.000000 0.300000 3.004709 0.014038 0.000118
-1.025000 0.210000 3.021562 0.046879 0.000217
-1.025000 0.220000 3.018834 0.040732 0.000202
-1.025000 0.230000 3.014675 0.035475 0.000188
-1.025000 0.240000 3.012130 0.030561 0.000175
-1.025000 0.250000 3.009078 0.026514 0.000163
-1.025000 0.260000 3.008095 0.022404 0.000150
-1.025000 0.270000 3.006034 0.019265 0.000139
-1.025000 0.280000 3.004973 0.016376 0.000128
-1.025000 0.290000 3.003661 0.013840 0.000118
-1.025000 0.300000 3.002371 0.011805 0.000109
-1.050000 0.210000 3.017475 0.040525 0.000201
-1.050000 0.220000 3.013605 0.035818 0.000189
-1.050000 0.230000 3.011312 0.031379 0.000177
-1.050000 0.240000 3.008683 0.027419 0.000166
-1.050000 0.250000 3.007795 0.023609 0.000154
-1.050000 0.260000 3.006533 0.020513 0.000143
-1.050000 0.270000 3.004641 0.018040 0.000134
-1.050000 0.280000 3.003703 0.015884 0.000126
-1.050000 0.290000 3.002301 0.014023 0.000118
-1.050000 0.300000 3.002113 0.012461 0.000112
-1.075000 0.210000 3.012969 0.038371 0.000196
-1.075000 0.220000 3.011511 0.033417 0.000183
-1.075000 0.230000 3.009333 0.029983 0.000173
-1.075000 0.240000 3.007373 0.026754 0.000164
-1.075000 0.250000 3.005569 0.024331 0.000156
-1.075000 0.260000 3.005046 0.021772 0.000148
-1.075000 0.270000 3.005110 0.019633 0.000140
-1.075000 0.280000 3.002882 0.018343 0.000135
-1.075000 0.290000 3.003204 0.016920 0.000130
-1.075000 0.300000 3.003436 0.015913 0.000126
-1.100000 0.210000 3.012502 0.037863 0.000195
-1.100000 0.220000 3.010387 0.034619 0.000186
-1.100000 0.230000 3.008970 0.031709 0.000178
-1.100000 0.240000 3.007347 0.029398 0.000171
-1.100000 0.250000 3.006480 0.027213 0.000165
-1.100000 0.260000 3.006170 0.025398 0.000159
-1.100000 0.270000 3.005141 0.024227 0.000156
-1.100000 0.280000 3.005214 0.023235 0.000152
-1.100000 0.290000 3.004632 0.022470 0.000150
-1.100000 0.300000 3.004649 0.022319 0.000149
-1.125000 0.210000 3.012454 0.040510 0.000201
-1.125000 0.220000 3.010413 0.038206 0.000195
-1.125000 0.230000 3.008866 0.036104 0.000190
-1.125000 0.240000 3.009226 0.033669 0.000183
-1.125000 0.250000 3.007930 0.032674 0.000181
-1.125000 0.260000 3.007701 0.031808 0.000178
-1.125000 0.270000 3.008062 0.030920 0.000176
-1.125000 0.280000 3.008203 0.030530 0.000175
-1.125000 0.290000 3.009050 0.030141 0.000174
-1.125000 0.300000 3.008687 0.030756 0.000175
-1.150000 0.210000 3.012974 0.045820 0.000214
-1.150000 0.220000 3.013409 0.043385 0.000208
-1.150000 0.230000 3.011779 0.042445 0.000206
-1.150000 0.240000 3.011580 0.041212 0.000203
-1.150000 0.250000 3.011833 0.040755 0.000202
-1.150000 0.260000 3.010820 0.040180 0.000200
-1.150000 0.270000 3.011896 0.040141 0.000200
-1.150000 0.280000 3.013118 0.039851 0.000200
-1.150000 0.290000 3.012585 0.040880 0.000202
-1.150000 0.300000 3.012798 0.041624 0.000204
+0.925000 0.210000 3.058913 0.106720 0.000327
+0.925000 0.220000 3.052538 0.096423 0.000311
+0.925000 0.230000 3.048655 0.087686 0.000296
+0.925000 0.240000 3.042838 0.078520 0.000280
+0.925000 0.250000 3.040174 0.070879 0.000266
+0.925000 0.260000 3.037136 0.063816 0.000253
+0.925000 0.270000 3.030807 0.057092 0.000239
+0.925000 0.280000 3.028820 0.051202 0.000226
+0.925000 0.290000 3.024998 0.046333 0.000215
+0.925000 0.300000 3.020401 0.041188 0.000203
+0.950000 0.210000 3.045880 0.085547 0.000292
+0.950000 0.220000 3.042776 0.076742 0.000277
+0.950000 0.230000 3.036732 0.068630 0.000262
+0.950000 0.240000 3.031133 0.061198 0.000247
+0.950000 0.250000 3.029366 0.054173 0.000233
+0.950000 0.260000 3.025996 0.048252 0.000220
+0.950000 0.270000 3.020808 0.042441 0.000206
+0.950000 0.280000 3.020260 0.037127 0.000193
+0.950000 0.290000 3.018084 0.032343 0.000180
+0.950000 0.300000 3.014146 0.028325 0.000168
+0.975000 0.210000 3.035578 0.069035 0.000263
+0.975000 0.220000 3.030422 0.061130 0.000247
+0.975000 0.230000 3.027297 0.053697 0.000232
+0.975000 0.240000 3.023616 0.046960 0.000217
+0.975000 0.250000 3.020394 0.041076 0.000203
+0.975000 0.260000 3.017329 0.035892 0.000189
+0.975000 0.270000 3.016084 0.030882 0.000176
+0.975000 0.280000 3.012294 0.026868 0.000164
+0.975000 0.290000 3.010148 0.022837 0.000151
+0.975000 0.300000 3.007648 0.019329 0.000139
+1.000000 0.210000 3.027397 0.055972 0.000237
+1.000000 0.220000 3.022873 0.049370 0.000222
+1.000000 0.230000 3.018930 0.042737 0.000207
+1.000000 0.240000 3.017400 0.037081 0.000193
+1.000000 0.250000 3.014820 0.031966 0.000179
+1.000000 0.260000 3.011042 0.027694 0.000166
+1.000000 0.270000 3.009339 0.023523 0.000153
+1.000000 0.280000 3.007671 0.019836 0.000141
+1.000000 0.290000 3.006740 0.016731 0.000129
+1.000000 0.300000 3.004798 0.013946 0.000118
+1.025000 0.210000 3.021520 0.046790 0.000216
+1.025000 0.220000 3.018910 0.040580 0.000201
+1.025000 0.230000 3.015748 0.035139 0.000187
+1.025000 0.240000 3.012332 0.030381 0.000174
+1.025000 0.250000 3.009974 0.026292 0.000162
+1.025000 0.260000 3.008076 0.022528 0.000150
+1.025000 0.270000 3.006474 0.019284 0.000139
+1.025000 0.280000 3.004402 0.016419 0.000128
+1.025000 0.290000 3.004008 0.013784 0.000117
+1.025000 0.300000 3.002718 0.011718 0.000108
+1.050000 0.210000 3.016287 0.040776 0.000202
+1.050000 0.220000 3.013919 0.035822 0.000189
+1.050000 0.230000 3.010429 0.031364 0.000177
+1.050000 0.240000 3.008584 0.027341 0.000165
+1.050000 0.250000 3.007490 0.023641 0.000154
+1.050000 0.260000 3.005663 0.020758 0.000144
+1.050000 0.270000 3.004210 0.018246 0.000135
+1.050000 0.280000 3.003828 0.015817 0.000126
+1.050000 0.290000 3.003462 0.013989 0.000118
+1.050000 0.300000 3.002826 0.012358 0.000111
+1.075000 0.210000 3.013246 0.038215 0.000195
+1.075000 0.220000 3.010884 0.034017 0.000184
+1.075000 0.230000 3.008825 0.030238 0.000174
+1.075000 0.240000 3.007200 0.027030 0.000164
+1.075000 0.250000 3.006945 0.023907 0.000155
+1.075000 0.260000 3.005653 0.021450 0.000146
+1.075000 0.270000 3.003581 0.019963 0.000141
+1.075000 0.280000 3.003171 0.018353 0.000135
+1.075000 0.290000 3.003400 0.016709 0.000129
+1.075000 0.300000 3.002960 0.015967 0.000126
+1.100000 0.210000 3.011709 0.037935 0.000195
+1.100000 0.220000 3.010307 0.034425 0.000186
+1.100000 0.230000 3.009692 0.031435 0.000177
+1.100000 0.240000 3.007759 0.029021 0.000170
+1.100000 0.250000 3.007560 0.026960 0.000164
+1.100000 0.260000 3.006724 0.025109 0.000158
+1.100000 0.270000 3.005851 0.024074 0.000155
+1.100000 0.280000 3.004748 0.023351 0.000153
+1.100000 0.290000 3.004264 0.022704 0.000151
+1.100000 0.300000 3.005299 0.022141 0.000149
+1.125000 0.210000 3.012270 0.040512 0.000201
+1.125000 0.220000 3.010200 0.038192 0.000195
+1.125000 0.230000 3.009738 0.035823 0.000189
+1.125000 0.240000 3.009311 0.034197 0.000185
+1.125000 0.250000 3.009132 0.032326 0.000180
+1.125000 0.260000 3.008219 0.031734 0.000178
+1.125000 0.270000 3.008864 0.030734 0.000175
+1.125000 0.280000 3.008436 0.030539 0.000175
+1.125000 0.290000 3.006773 0.031102 0.000176
+1.125000 0.300000 3.008238 0.030643 0.000175
+1.150000 0.210000 3.011833 0.046493 0.000216
+1.150000 0.220000 3.011270 0.044010 0.000210
+1.150000 0.230000 3.010390 0.042478 0.000206
+1.150000 0.240000 3.011530 0.041137 0.000203
+1.150000 0.250000 3.011711 0.040489 0.000201
+1.150000 0.260000 3.012785 0.040046 0.000200
+1.150000 0.270000 3.012631 0.039918 0.000200
+1.150000 0.280000 3.012002 0.040364 0.000201
+1.150000 0.290000 3.012610 0.040443 0.000201
+1.150000 0.300000 3.012983 0.041655 0.000204
diff --git a/doc/pub/week2/ipynb/week2.ipynb b/doc/pub/week2/ipynb/week2.ipynb
index 34d45c8f..c4e89419 100644
--- a/doc/pub/week2/ipynb/week2.ipynb
+++ b/doc/pub/week2/ipynb/week2.ipynb
@@ -3,9 +3,7 @@
{
"cell_type": "markdown",
"id": "d6eff1d9",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"\n",
@@ -15,9 +13,7 @@
{
"cell_type": "markdown",
"id": "684bbe5c",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"# Week 4 January 22-26, Building a Variational Monte Carlo program \n",
"**Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no**, Department of Physics and Center fo Computing in Science Education, University of Oslo, Oslo, Norway and Department of Physics and Astronomy and Facility for Rare Ion Beams, Michigan State University, East Lansing, Michigan, USA\n",
@@ -28,9 +24,7 @@
{
"cell_type": "markdown",
"id": "a20009a8",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"## Overview of week 4, January 22-26\n",
"**Topics.**\n",
@@ -53,9 +47,7 @@
{
"cell_type": "markdown",
"id": "f9c0217e",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"## Code templates for first project\n",
"\n",
@@ -67,9 +59,7 @@
{
"cell_type": "markdown",
"id": "3e71907a",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"## Basic Quantum Monte Carlo, repetition from last week\n",
"\n",
@@ -80,9 +70,7 @@
{
"cell_type": "markdown",
"id": "93e92f48",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"$$\n",
"\\cal {E}[H] =\n",
@@ -94,9 +82,7 @@
{
"cell_type": "markdown",
"id": "700488c7",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"is an upper bound to the ground state energy $E_0$ of the hamiltonian $H$, that is"
]
@@ -104,9 +90,7 @@
{
"cell_type": "markdown",
"id": "40948096",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"$$\n",
"E_0 \\le {\\cal E}[H].\n",
@@ -116,9 +100,7 @@
{
"cell_type": "markdown",
"id": "7893f2ac",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"## Multi-dimensional integrals\n",
"\n",
@@ -133,9 +115,7 @@
{
"cell_type": "markdown",
"id": "5ce6b038",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"## Trail functions\n",
"\n",
@@ -146,9 +126,7 @@
{
"cell_type": "markdown",
"id": "7504aac9",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"$$\n",
"\\Psi_T(\\boldsymbol{R};\\boldsymbol{\\alpha})=\\sum_i a_i\\Psi_i(\\boldsymbol{R}),\n",
@@ -158,9 +136,7 @@
{
"cell_type": "markdown",
"id": "cbf0c076",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"and assuming that the set of eigenfunctions are normalized, one obtains"
]
@@ -168,9 +144,7 @@
{
"cell_type": "markdown",
"id": "3e343e67",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"$$\n",
"\\frac{\\sum_{nm}a^*_ma_n \\int d\\boldsymbol{R}\\Psi^{\\ast}_m(\\boldsymbol{R})H(\\boldsymbol{R})\\Psi_n(\\boldsymbol{R})}\n",
@@ -182,9 +156,7 @@
{
"cell_type": "markdown",
"id": "c73d40f1",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"where we used that $H(\\boldsymbol{R})\\Psi_n(\\boldsymbol{R})=E_n\\Psi_n(\\boldsymbol{R})$."
]
@@ -192,9 +164,7 @@
{
"cell_type": "markdown",
"id": "c5eb2752",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"## Variational principle\n",
"The variational principle yields the lowest energy of states with a given symmetry.\n",
@@ -213,9 +183,7 @@
{
"cell_type": "markdown",
"id": "4ecad58d",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"## Tedious parts of VMC calculations\n",
"\n",
@@ -234,9 +202,7 @@
{
"cell_type": "markdown",
"id": "1d25bbf8",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"## Bird's eye view on Variational MC\n",
"\n",
@@ -250,9 +216,7 @@
{
"cell_type": "markdown",
"id": "aebf840c",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"$$\n",
"\\overline{E}[\\boldsymbol{\\alpha}]=\\frac{\\int d\\boldsymbol{R}\\Psi^{\\ast}_{T}(\\boldsymbol{R},\\boldsymbol{\\alpha})H(\\boldsymbol{R})\\Psi_{T}(\\boldsymbol{R},\\boldsymbol{\\alpha})}\n",
@@ -263,9 +227,7 @@
{
"cell_type": "markdown",
"id": "bce8403c",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"1. Thereafter we vary $\\boldsymbol{\\alpha}$ according to some minimization algorithm and return eventually to the first step if we are not satisfied with the results.\n",
"\n",
@@ -275,9 +237,7 @@
{
"cell_type": "markdown",
"id": "e8245e89",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"## Linking with standard statistical expressions for expectation values\n",
"\n",
@@ -287,9 +247,7 @@
{
"cell_type": "markdown",
"id": "c1a1d604",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"$$\n",
"P(\\boldsymbol{R})= \\frac{\\left|\\psi_T(\\boldsymbol{R};\\boldsymbol{\\alpha})\\right|^2}{\\int \\left|\\psi_T(\\boldsymbol{R};\\boldsymbol{\\alpha})\\right|^2d\\boldsymbol{R}}.\n",
@@ -299,9 +257,7 @@
{
"cell_type": "markdown",
"id": "7536d3a7",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"This is our model for probability distribution function.\n",
"The approximation to the expectation value of the Hamiltonian is now"
@@ -310,9 +266,7 @@
{
"cell_type": "markdown",
"id": "9e9b119e",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"$$\n",
"\\overline{E}[\\boldsymbol{\\alpha}] = \n",
@@ -324,9 +278,7 @@
{
"cell_type": "markdown",
"id": "79367e25",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"## The local energy\n",
"We define a new quantity"
@@ -335,9 +287,7 @@
{
"cell_type": "markdown",
"id": "d7e591d8",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"\n",
"
\n",
@@ -351,9 +301,7 @@
{
"cell_type": "markdown",
"id": "3471badb",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"called the local energy, which, together with our trial PDF yields a new expression (and which look simlar to the the expressions for moments in statistics)"
]
@@ -361,9 +309,7 @@
{
"cell_type": "markdown",
"id": "d674a852",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"\n",
"\n",
@@ -377,9 +323,7 @@
{
"cell_type": "markdown",
"id": "83fb79e5",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"with $N$ being the number of Monte Carlo samples. The expression on the right hand side follows from Bernoulli's law of large numbers, which states that the sample mean, in the limit $N\\rightarrow \\infty$ approaches the true mean"
]
@@ -387,9 +331,7 @@
{
"cell_type": "markdown",
"id": "d823a042",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"## The Monte Carlo algorithm\n",
"\n",
@@ -415,9 +357,7 @@
{
"cell_type": "markdown",
"id": "d2310e67",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"## Example from last week, the harmonic oscillator in one dimension (best seen with jupyter-notebook)\n",
"\n",
@@ -434,9 +374,7 @@
{
"cell_type": "markdown",
"id": "6ce44d38",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"$$\n",
"\\psi_T(x;\\alpha) = \\exp{-(\\frac{1}{2}\\alpha^2x^2)},\n",
@@ -446,9 +384,7 @@
{
"cell_type": "markdown",
"id": "d3a90c0d",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"which results in a local energy"
]
@@ -456,9 +392,7 @@
{
"cell_type": "markdown",
"id": "7265610e",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"$$\n",
"\\frac{1}{2}\\left(\\alpha^2+x^2(1-\\alpha^4)\\right).\n",
@@ -468,9 +402,7 @@
{
"cell_type": "markdown",
"id": "829a7cda",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"We can compare our numerically calculated energies with the exact energy as function of $\\alpha$"
]
@@ -478,9 +410,7 @@
{
"cell_type": "markdown",
"id": "193f46cc",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"$$\n",
"\\overline{E}[\\alpha] = \\frac{1}{4}\\left(\\alpha^2+\\frac{1}{\\alpha^2}\\right).\n",
@@ -490,9 +420,7 @@
{
"cell_type": "markdown",
"id": "e530a70c",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"Similarly, with the above ansatz, we can also compute the exact variance which reads"
]
@@ -500,9 +428,7 @@
{
"cell_type": "markdown",
"id": "063231f1",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"$$\n",
"\\sigma^2[\\alpha]=\\frac{1}{4}\\left(1+(1-\\alpha^4)^2\\frac{3}{4\\alpha^4}\\right)-\\overline{E}.\n",
@@ -512,9 +438,7 @@
{
"cell_type": "markdown",
"id": "1fad9d90",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"Our code for computing the energy of the ground state of the harmonic oscillator follows here. We start by defining directories where we store various outputs."
]
@@ -523,10 +447,7 @@
"cell_type": "code",
"execution_count": 1,
"id": "584282b5",
- "metadata": {
- "collapsed": false,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"# Common imports\n",
@@ -561,9 +482,7 @@
{
"cell_type": "markdown",
"id": "3f5bdfc9",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"We proceed with the implementation of the Monte Carlo algorithm but list first the ansatz for the wave function and the expression for the local energy"
]
@@ -572,10 +491,7 @@
"cell_type": "code",
"execution_count": 2,
"id": "2f5baced",
- "metadata": {
- "collapsed": false,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
@@ -599,9 +515,7 @@
{
"cell_type": "markdown",
"id": "34fc14b6",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"Note that in the Metropolis algorithm there is no need to compute the\n",
"trial wave function, mainly since we are just taking the ratio of two\n",
@@ -615,10 +529,7 @@
"cell_type": "code",
"execution_count": 3,
"id": "a34f2811",
- "metadata": {
- "collapsed": false,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"# The Monte Carlo sampling with the Metropolis algo\n",
@@ -667,9 +578,7 @@
{
"cell_type": "markdown",
"id": "42215fbe",
- "metadata": {
- "editable": true
- },
+ "metadata": {},
"source": [
"Finally, the results are presented here with the exact energies and variances as well."
]
@@ -678,11 +587,46 @@
"cell_type": "code",
"execution_count": 4,
"id": "459af09b",
- "metadata": {
- "collapsed": false,
- "editable": true
- },
- "outputs": [],
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHLCAYAAAA0kLlRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+QUlEQVR4nO3dd3hT5fvH8XdGm3TvRVto2ZS9l4ioTAUBFQVlKPgVB4IICg4QFz9RcTNEhsoQBygqMmSKgKyC7FE6GB1075Wc3x+FamkpTWmSNr1f15Wr7ckZd06h+eQ5z3kelaIoCkIIIYQQNkJt7QKEEEIIIaqShBshhBBC2BQJN0IIIYSwKRJuhBBCCGFTJNwIIYQQwqZIuBFCCCGETZFwI4QQQgibIuFGCCGEEDZFwo0QQgghbIqEGyGsaNmyZahUqhs+tm/fbu0SbcL27dur3fm89ruPioqydilC2ByttQsQQsDSpUtp2rRpqeVhYWFWqEZYwj333MOePXsICAiwdilC2BwJN0JUAy1atKBDhw7WLoOCggJUKhVarfxpMJecnBz0ej0+Pj74+PhYuxwhbJJclhKihlCpVDz77LN88803NGvWDEdHR1q3bs2vv/5aat2zZ88yYsQIfH190el0NGvWjM8//7zEOtcu1XzzzTe88MILBAYGotPpOHfuHACLFi2icePG6HQ6wsLCWLlyJWPGjCEkJAQARVFo1KgRffv2LXX8zMxM3NzceOaZZ8p9TZ9//jm33347vr6+ODk50bJlS+bMmUNBQUGJ9e644w5atGjB/v376dGjB46OjtSvX5//+7//w2g0llj31KlT9OvXD0dHR7y9vRk/fjwZGRk3Pb8//fQTKpWKLVu2lHpu/vz5qFQq/vnnHwAOHDjAww8/TEhICA4ODoSEhDB8+HCio6NLbHft0tOmTZt4/PHH8fHxwdHRkby8vDIvS23evJn77ruPoKAg9Ho9DRs25MknnyQxMbHEfl9//XVUKhXHjx9n+PDhuLm54efnx+OPP05aWlqJdY1GI59++ilt2rTBwcEBd3d3unTpwrp160qst3r1arp27YqTkxPOzs707duX8PDwm543Iaoj+XgmRDVgMBgoLCwssUylUqHRaEos++2339i/fz9vvPEGzs7OzJkzhyFDhnD69Gnq168PwIkTJ+jWrRt169blgw8+wN/fn40bN/Lcc8+RmJjIzJkzS+xz+vTpdO3alQULFqBWq/H19eWLL77gySef5P777+fDDz8kLS2NWbNmkZeXV6K+CRMmMGnSJM6ePUujRo2Kn/v6669JT0+/abiJiIhgxIgRhIaGYm9vz5EjR3j77bc5deoUS5YsKbFuXFwcjzzyCC+88AIzZ85k7dq1TJ8+nTp16jBq1CgA4uPj6dmzJ3Z2dsybNw8/Pz9WrFjBs88+e9Pfwb333ouvry9Lly7lrrvuKvHcsmXLaNeuHa1atQIgKiqKJk2a8PDDD+Pp6UlsbCzz58+nY8eOnDhxAm9v7xLbP/7449xzzz188803ZGVlYWdnd8Pz0bVrV8aNG4ebmxtRUVHMnTuX2267jaNHj5ba7v777+ehhx5i7NixHD16lOnTpwOUOHdjxoxh+fLljB07ljfeeAN7e3sOHTpUIlS98847vPrqqzz22GO8+uqr5Ofn895779GjRw/27dsnl0dFzaMIIaxm6dKlClDmQ6PRlFgXUPz8/JT09PTiZXFxcYparVZmz55dvKxv375KUFCQkpaWVmL7Z599VtHr9UpycrKiKIqybds2BVBuv/32EusZDAbF399f6dy5c4nl0dHRip2dnVKvXr3iZenp6YqLi4syceLEEuuGhYUpvXr1MulcGAwGpaCgQPn6668VjUZTXKeiKErPnj0VQPn7779LHadv377FP7/00kuKSqVSDh8+XGK93r17K4Cybdu2cmuYPHmy4uDgoKSmphYvO3HihAIon3766Q23KywsVDIzMxUnJyfl448/Ll5+7fc7atSoUttcey4yMrLMfRqNRqWgoECJjo5WAOXnn38ufm7mzJkKoMyZM6fENk8//bSi1+sVo9GoKIqi7Ny5UwGUV1555Ya1x8TEKFqtVpkwYUKJ5RkZGYq/v78ybNiwG24rRHUll6WEqAa+/vpr9u/fX+Lx999/l1qvV69euLi4FP/s5+eHr69v8eWQ3NxctmzZwpAhQ3B0dKSwsLD4MWDAAHJzc9m7d2+Jfd5///0lfj59+jRxcXEMGzasxPK6devSvXv3EstcXFx47LHHWLZsGVlZWQBs3bqVEydOVKi1JDw8nEGDBuHl5YVGo8HOzo5Ro0ZhMBg4c+ZMiXX9/f3p1KlTiWWtWrUqcSlo27ZtNG/enNatW5dYb8SIETetBYpaWHJycli9enXxsqVLl6LT6UrsIzMzk5deeomGDRui1WrRarU4OzuTlZXFyZMnS+33+nN8IwkJCYwfP57g4GC0Wi12dnbUq1cPoMz9Dho0qMTPrVq1Ijc3l4SEBAB+//13gHJb0DZu3EhhYSGjRo0q8e9Fr9fTs2fPanWHmRAVJZelhKgGmjVrVqEOxV5eXqWW6XQ6cnJyAEhKSqKwsJBPP/2UTz/9tMx9XN9/4/q7dZKSkoCi4HQ9Pz8/IiMjSyybMGECn332GStWrOB///sfn332GUFBQdx3333lvpaYmBh69OhBkyZN+PjjjwkJCUGv17Nv3z6eeeaZ4tdU0dd+rfbQ0NBS6/n7+5dbyzXNmzenY8eOLF26lP/9738YDAaWL1/Offfdh6enZ/F6I0aMYMuWLbz22mt07NgRV1dXVCoVAwYMKFU3lD7HZTEajfTp04fLly/z2muv0bJlS5ycnDAajXTp0qXM/V5/TnQ6HUDxuleuXEGj0ZT7+uPj4wHo2LFjmc+r1fIZWNQ8Em6EsCEeHh5oNBpGjhx5w0/r17/5q1SqEj9fe8O89qb3X3FxcaWWNWzYkP79+/P555/Tv39/1q1bx6xZs0r1F7reTz/9RFZWFmvWrClunQA4fPhwuduVx8vLq8way1p2I4899hhPP/00J0+e5Pz588TGxvLYY48VP5+Wlsavv/7KzJkzmTZtWvHyvLw8kpOTy9zn9ee4LMeOHePIkSMsW7aM0aNHFy+/1sG7Mnx8fDAYDMTFxd0wYF3rH/TDDz+U+D0IUZNJJBfChjg6OtKrVy/Cw8Np1aoVHTp0KPUoqwXkv5o0aYK/vz/fffddieUxMTHs3r27zG0mTpzIP//8w+jRo9FoNDzxxBM3rfXaG/611gYougNr0aJFN932Rnr16sXx48c5cuRIieUrV66s8D6GDx+OXq9n2bJlLFu2jMDAQPr06VOibkVRStQN8OWXX2IwGCpde1nnA2DhwoWV3mf//v2Boru9bqRv375otVoiIiLK/PdSHYYoEMJU0nIjRDVw7NixUndLATRo0MDksVA+/vhjbrvtNnr06MFTTz1FSEgIGRkZnDt3jl9++YWtW7eWu71arWbWrFk8+eSTPPDAAzz++OOkpqYya9YsAgICyrxM0bt3b8LCwti2bRuPPvoovr6+N62zd+/e2NvbM3z4cF588UVyc3OZP38+KSkpJr3e/5o0aRJLlizhnnvu4a233iq+W+rUqVMV3oe7uztDhgxh2bJlpKamMmXKlBKv2dXVldtvv5333nsPb29vQkJC2LFjB4sXL8bd3b3StTdt2pQGDRowbdo0FEXB09OTX375hc2bN1d6nz169GDkyJG89dZbxMfHc++996LT6QgPD8fR0ZEJEyYQEhLCG2+8wSuvvML58+fp168fHh4exMfHs2/fPpycnJg1a1alaxDCGqTlRohq4LHHHqNr166lHj///LPJ+woLC+PQoUO0aNGCV199lT59+jB27Fh++OGHUrc438j//vc/vvjiC44cOcKQIUOYNWsW06ZNo23btjd8A7/WAbkiHYmh6M38xx9/JCUlhaFDhzJhwgTatGnDJ598UqHty+Lv78+OHTsICwvjqaee4tFHH0Wv1/PZZ5+ZtJ/HHnuMhIQE8vPzGTNmTKnnV65cSa9evXjxxRcZOnQoBw4cYPPmzbi5uVW6djs7O3755RcaN27Mk08+yfDhw0lISOCPP/6o9D6h6Db2uXPnsnv3bh544AGGDRvGzz//XOLy5PTp0/nhhx84c+YMo0ePpm/fvrz44otER0dz++2339LxhbAGlaIoirWLEEJUf6mpqTRu3JjBgwfzxRdflHq+Q4cOqFQq9u/fb4XqhBDiX3JZSghRSlxcHG+//Ta9evXCy8uL6OhoPvzwQzIyMpg4cWLxeunp6Rw7doxff/2VgwcPsnbtWitWLYQQRSTcCCFK0el0REVF8fTTT5OcnIyjoyNdunRhwYIFNG/evHi9Q4cOFQegmTNnMnjwYOsVLYQQV8llKSGEEELYFOlQLIQQQgibIuFGCCGEEDZFwo0QQgghbEqt61BsNBq5fPkyLi4uFRoSXQghhBDWpygKGRkZ1KlT56ZzntW6cHP58mWCg4OtXYYQQgghKuHChQsEBQWVu06tCzcuLi5A0clxdXW1cjVCCCGEqIj09HSCg4OL38fLU+vCzbVLUa6urhJuhBBCiBqmIl1KpEOxEEIIIWyKhBshhBBC2BQJN0IIIYSwKRJuqtKhQ7BmjbWrEEIIIWq1Wteh2Gy2b4devcDD49+vQgghhLA4abmpKj16QIsWkJICs2dbuxohhBCi1jI53Cxbtozs7Gxz1FKzaTQwZ07R9598AtHR1q1HCCGEqKVMDjfTp0/H39+fsWPHsnv3bnPUVHP16wd33gl5efDqq9auRgghhKiVTA43Fy9eZPny5aSkpNCrVy+aNm3Ku+++S1xcnDnqq1lUqn9bb5Yvh/Bw69YjhBBC1EImhxuNRsOgQYNYs2YNFy5c4H//+x8rVqygbt26DBo0iJ9//hmj0WiOWmuG9u3hkUeKvp86FRTFuvUIIYQQtcwtdSj29fWle/fudO3aFbVazdGjRxkzZgwNGjRg+/btVVRiDfTWW2BvD1u2wKZN1q5GCCGEqFUqFW7i4+N5//33ad68OXfccQfp6en8+uuvREZGcvnyZYYOHcro0aOrutaaIyQEJkwo+n7qVDAYrFqOEEIIUZuoFMW06yYDBw5k48aNNG7cmHHjxjFq1Cg8PT1LrHP58mWCgoKq5eWp9PR03NzcSEtLM+/EmcnJ0KABpKbC0qUwZoz5jiWEEELYOFPev01uufH19WXHjh0cO3aMSZMmlQo2AAEBAURGRpq6a9vi6QmvvFL0/auvQk6OdesRQgghagmTW25qOou13ADk5kLTpkVj3syeDdOmmfd4QgghhI0y5f3b5HDzySeflL0jlQq9Xk/Dhg25/fbb0Wg0puzWYiwabgBWrIBHHwVXVzh3Dnx8zH9MIYQQwsaYNdyEhoZy5coVsrOz8fDwQFEUUlNTcXR0xNnZmYSEBOrXr8+2bdsIDg6+pRdiDhYPN0YjdOhQNObNc8/Bxx+b/5hCCCGEjTFrn5t33nmHjh07cvbsWZKSkkhOTubMmTN07tyZjz/+mJiYGPz9/Xn++edvuq+dO3cycOBA6tSpg0ql4qeffip3/TVr1tC7d298fHxwdXWla9eubNy40dSXYFlqNbz3XtH38+YVtd4IIYQQwmxMDjevvvoqH374IQ0aNChe1rBhQ95//32mT59OUFAQc+bM4a+//rrpvrKysmjdujWfffZZhY69c+dOevfuzfr16zl48CC9evVi4MCBhFf3kYDvugv694fCwn87GQshhBDCLLSmbhAbG0thYWGp5YWFhcVTMNSpU4eMjIyb7qt///7079+/wsf+6KOPSvz8zjvv8PPPP/PLL7/Qtm3bCu/HKt59FzZsgO++g8mToXNna1ckhBBC2CSTW2569erFk08+WaK1JDw8nKeeeoo777wTgKNHjxIaGlp1Vd6A0WgkIyOjzNvRr8nLyyM9Pb3EwxwMRoU9EUn8fPgSeyKSMBiv68rUsuW/Y93ItAxCCCGE2ZgcbhYvXoynpyft27dHp9Oh0+no0KEDnp6eLF68GABnZ2c++OCDKi/2eh988AFZWVkMGzbshuvMnj0bNze34oc5OjlvOBbLbe9uZfiivUz89jDDF+3ltne3suFYbMkV33gDHBzgzz/hl1+qvA4hhBBCmHi3lKIoxMTE4OPjw4ULFzh9+jSKotC0aVOaNGlya4WoVKxdu5bBgwdXaP1Vq1Yxbtw4fv75Z+6+++4brpeXl0deXl7xz+np6QQHB1fZ3VIbjsXy1PJDXH8SVVe/zn+0Hf1aBPz7xCuvwDvvFI1/c/QoaE2+MiiEEELUOqbcLWXSO6uiKDRq1Ijjx4/TpEmTWw40lbV69WrGjh3L999/X26wAYpbl8zBYFSY9cuJUsEGQKEo4Mz65QS9w/zRqK/GnRdfhC++gFOnYPFiePJJs9QmhBBC1FYmXZZSq9U0atSIpKQkc9VzU6tWrWLMmDGsXLmSe+65x2p1AOyLTCY2LfeGzytAbFou+yKT/13o5gYzZhR9P3MmZGaat0ghhBCiljG5z82cOXOYOnUqx44du+WDZ2ZmcvjwYQ4fPgxAZGQkhw8fJiYmBoDp06czatSo4vVXrVrFqFGj+OCDD+jSpQtxcXHExcWRlpZ2y7VURkLGjYNNues9+SQ0bAjx8WCBvklCCCFEbWJyuHn00UfZt28frVu3xsHBAU9PzxIPUxw4cIC2bdsW38Y9efJk2rZty4yrLRuxsbHFQQdg4cKFFBYW8swzzxAQEFD8mDhxoqkvo0r4uugrt569fdFcU1A0wN/VW+iFEEIIcetMnn7hq6++Kvf50aNH31JB5laV0y8YjAq3vbuVuLTcMvvdXPNwp2BeHtAMV73dvwsVBbp2hb//LmrJWbDglmoRQgghbJlZ55aq6ap6bqlrd0sBJQKO6rqffV10vHFfC/q18P934Z9/wu23g0ZTdOdUs2a3XI8QQghhi8w6txRAREQEr776KsOHDychIQGADRs2cPz48crsrkbr1yKA+Y+2w9+t5KUnfzc9Cx5tx6onuhDq7URCRh7jlx/kyW8OEJ9+tQ9Ojx5w331gMMD06VaoXgghhLA9Jrfc7Nixg/79+9O9e3d27tzJyZMnqV+/PnPmzGHfvn388MMP5qq1SphrVnCDUWFfZDIJGbn4uujpFOpZfPt3boGBT7eeZeGO8xQaFVx0WqYNaMrwjnVRnzkNLVoUBZydO4sCjxBCCCFKMGvLzbRp03jrrbfYvHkz9vb2xct79erFnj17TK/WRmjUKro28OK+NoF0beD177g2gN5Ow9S+Tfllwm20DnIjI6+QV9Ye4+Ev9nLOMwieeKJoxSlTZFoGIYQQ4haZHG6OHj3KkCFDSi338fGx6vg3NUGzAFfWPN2d1+4Nw9Few76oZAZ8/Cdf3jkSxckJ9u2Dat7yJYQQQlR3Jocbd3d3YmNjSy0PDw8nMDCwSoqyZRq1irG3hbLp+du5o4kP+QYjbx1M4ZvbHixaYfp0yM+3bpFCCCFEDWZyuBkxYgQvvfQScXFxqFQqjEYjf/31F1OmTCkx4J4oX5CHI0vHdOTjh9vg6WTP/4XdQ4KTB0REkPfZ59YuTwghhKixTO5QXFBQwJgxY/j2229RFAWtVovBYGDEiBEsW7YMjUZjrlqrhLk6FN+K5Kx83vrtBLoli5m98TNSHV05sv0APTs2Kl6nvA7LQgghhK2zyDg3ERERhIeHYzQaadu2LY0aNbr5RtVAdQw31/x5Mpbgnl0IuRLD510e5NRz05lxbxgHo5OZ9cuJEvNYBbjpmTkwrOSM40IIIYSNkkH8ylGdww1A3o9r0T0wlFytPXc88QXp3n5k5xtKrXetzWb+o+0k4AghhLB5prx/a03ducFgYNmyZWzZsoWEhASMRmOJ57du3WrqLsV/6IYOhttvR79zJ28e/JYnej1b5noKRQFn1i8n6B3mL5eohBBCiKtMDjcTJ05k2bJl3HPPPbRo0QKVSt5Uq5RKVTSZZufO3L1/I02b38Mp39AyV1WA2LRc9kUm07WBl2XrFEIIIaopk8PNt99+y3fffceAAQPMUY8A6NQJhg1D9d13TNu+jDHDZpW7ekJGbrnPCyGEELWJybeC29vb07BhQ3PUIv7rnXcw2tlxR+RBukcdLndVXxd9uc8LIYQQtYnJ4eaFF17g448/ppb1Q7a8Bg3gqacAeHnbElSKsdQqKorumuoU6mnh4oQQQojqy+TLUrt27WLbtm38/vvvNG/eHDs7uxLPr1mzpsqKq+3Ur71GwZKlNE84z+ATO1jbvFepdWYODJPOxEIIIcR/mBxu3N3dy5xbSpiBtzd2r7wM06fz4q5vWN+kO3nafycrHdW1ntwGLoQQQlxHxrmp7nJyoHFjuHiR6JdmcvjhJ/j7fBIr913A21nHtik9cdHb3Xw/QgghRA1myvu3yX1uAAoLC/njjz9YuHAhGRkZAFy+fJnMzMzK7E6Ux8EB3nwTgHoLPuK+YD2vD2pBfW8nEjPz+HTrOSsXKIQQQlQvJoeb6OhoWrZsyX333cczzzzDlStXAJgzZw5Tpkyp8gIFMHIktGoFaWkwcyb2WjWvDQwDYMmuSM4lSKgUQgghrjE53EycOJEOHTqQkpKCg4ND8fIhQ4awZcuWKi1OXKXRwAcfFH3/+eewdi29mvhyV1NfCo0Kb/x6Qu5eE0IIIa4yOdzs2rWLV199FXt7+xLL69Wrx6VLl6qsMHGdu++GF14o+v6xxyAigtfuDcNeo2bnmStsOZlg3fqEEEKIasLkcGM0GjEYSk/kePHiRVxcXKqkKHEDs2dD9+5Fl6cefJAQZw1jexRNzfDGryfILSj9exFCCCFqG5PDTe/evfnoo4+Kf1apVGRmZjJz5kyZksHc7Ozg22/B2xvCw2HSJJ7t1RA/Vx0xydks3hVp7QqFEEIIqzP5VvDLly/Tq1cvNBoNZ8+epUOHDpw9exZvb2927tyJr6+vuWqtEjXuVvCybNoE/fqBosDy5fwUdgeTVh/G0V7D1hfuwN9NpmMQQghhW0x5/67UODc5OTl8++23HDx4EKPRSLt27XjkkUdKdDCurmwi3ADMnAlvvAFOTij79vHAjlQORqcwuE0dPnq4rbWrE0IIIaqU2cNNTWYz4cZggL59YcsWCAvj+E+buXdJOIoCP4zvSocQmW9KCCGE7TD7IH6iGtBoYMUKCAiAEydo/sZLPNwhCICZ645jMNaqzCqEEEIUs2q42blzJwMHDqROnTqoVCp++umnm26zY8cO2rdvj16vp379+ixYsMD8hVZXfn6wenVR0Fm+nFcu/4WLXsvxy+ms3n/B2tUJIYQQVmHVcJOVlUXr1q357LPPKrR+ZGQkAwYMoEePHoSHh/Pyyy/z3HPP8eOPP5q50mqsRw945x0AnKdO5q16BQC8t/EUadkF1qxMCCGEsIpq0+dGpVKxdu1aBg8efMN1XnrpJdatW8fJkyeLl40fP54jR46wZ8+eCh3HZvrc/JfRCPfdB7/+itKgAUMe/5jD6TCmWwivD2pu7eqEEEKIW2bWPjcXLlzg4sWLxT/v27ePSZMm8cUXX5heqYn27NlDnz59Sizr27cvBw4coKCg7FaKvLw80tPTSzxsjloNX30F9eqhiojgyx3zQVH4Zm80p+Js8PUKIYQQ5TA53IwYMYJt27YBEBcXR+/evdm3bx8vv/wyb7zxRpUX+F9xcXH4+fmVWObn50dhYSGJiYllbjN79mzc3NyKH8HBwWat0Wo8PeH778HODu9Nv/HepW0YjAqz1sm8U0IIIWoXk8PNsWPH6NSpEwDfffcdLVq0YPfu3axcuZJly5ZVdX2lqFSqEj9fe+O+fvk106dPJy0trfhx4YINd7Tt2BHmzgXggdWf0DnuNHvOJ/H7sTgrFyaEEEJYjsnhpqCgAJ1OB8Aff/zBoEGDAGjatCmxsbFVW911/P39iYsr+UadkJCAVqvFy8urzG10Oh2urq4lHjbtmWdg2DBUhYV8+dt7eGSn8fZvJ8nJl3mnhBBC1A4mh5vmzZuzYMEC/vzzTzZv3ky/fv2AomkZbhQwqkrXrl3ZvHlziWWbNm2iQ4cO2NnZmfXYNYZKBV9+CY0b45IYx+cbP+ZyShYLd0ZYuzIhhBDCIkwON++++y4LFy7kjjvuYPjw4bRu3RqAdevWFV+uqqjMzEwOHz7M4cOHgaJbvQ8fPkxMTAxQdElp1KhRxeuPHz+e6OhoJk+ezMmTJ1myZAmLFy9mypQppr4M2+biUtT/Rq+n25l9PL3ne+Zvj+BiSra1KxNCCCHMrlK3ghsMBtLT0/Hw8CheFhUVhaOjo0kTZ27fvp1evXqVWj569GiWLVvGmDFjiIqKYvv27cXP7dixg+eff57jx49Tp04dXnrpJcaPH1/hY9rkreA3snQpPP44RpWaRx56C497+zDvkfbWrkoIIYQwmVnnlsrJyUFRFBwdHQGIjo5m7dq1NGvWjL59+1a+agupVeEG4PHHYelSrji5M2DMJ3w8qT/dGnpbuyohhBDCJGYd5+a+++7j66+/BiA1NZXOnTvzwQcfMHjwYObPn1+5ioX5fPYZtGyJT1Yqn66bwxs/HaHQYLR2VUIIIYTZmBxuDh06RI8ePQD44Ycf8PPzIzo6mq+//ppPPvmkygsUt8jREb7/HsXZmS4XjnHvmi9Yvjfa2lUJIYQQZmNyuMnOzsbFxQUoulNp6NChqNVqunTpQnS0vGlWS02aoPrySwCe3fMd++YtJykzz8pFCSGEEOZhcrhp2LAhP/30ExcuXGDjxo3F0yEkJCTUjj4sNdVDD2F8+mkA3l7zHotW7LByQUIIIYR5mBxuZsyYwZQpUwgJCaFTp0507doVKGrFadu2bZUXKKqOeu5cMlu1xSM3g75vPMfxyCvWLkkIIYSocpW6FTwuLo7Y2Fhat26NWl2Uj/bt24erqytNmzat8iKrUq27W+p6UVFkN2+FY3YGv/Z6kHu2rL7h1BVCCCFEdWHWu6WgaBoEFxcXNm/eTE5ODgAdO3as9sFGACEh5C5eAsC9275n//vmn81dCCGEsCSTw01SUhJ33XUXjRs3ZsCAAcXzSY0bN44XXnihygsUVc/z4Qc49PATADR/bTLZJ05ZuSIhhBCi6pgcbp5//nns7OyIiYkpHsgP4KGHHmLDhg1VWpwwn7Aln3IktCVOedlkDBwCV1vghBBCiJrO5HCzadMm3n33XYKCgkosb9SokdwKXoPoHXSkLf6aREc3/M6fImrEWH4+fIk9EUkYjCZ3wxJCCCGqDZPDTVZWVokWm2sSExPR6XRVUpSwjB53tGbu6JkYURHy0yp2vPoBwxft5bZ3t7LhWKy1yxNCCCEqxeRwc/vttxdPvwCgUqkwGo289957ZU6CKaqvjcfjWOnamI9uGwHAW5vm0Tw+gri0XJ5afkgCjhBCiBrJ5FvBT5w4wR133EH79u3ZunUrgwYN4vjx4yQnJ/PXX3/RoEEDc9VaJWr9reBXGYwKt727ldi0XNRGA8u+f53bo8JJ0zkxatgb/FOnCf5uena9dCcatdwqLoQQwrrMeit4WFgY//zzD506daJ3795kZWUxdOhQwsPDq32wEf/aF5lMbFouAEa1hmcGT+NAYDPc8rJYvvpV2l88TmxaLvsik61cqRBCCGEabWU28vf3Z9asWVVdi7CghIzcEj9nXG2x+fLHN+kW8w9ffzeDcUNfIyGjjXUKFEIIISqpQuHmn3/+qfAOW7VqVelihOX4uuhLLcu2d+CxB2aycO073BF5kKU/zCLi7vrQZrgVKhRCCCEqp0J9btRqNSqViputqlKpMBgMVVacOUifmyLX+tzEpeVy/W/VvrCAz9a9S5+zeynUaMn6egVuI4ZZpU4hhBACTHv/rlDLTWRkZJUUJqoPjVrFzIFhPLX8ECooEXAKtHY8fd80Pv7tA+45+SdOI4dzOiGNJpOesFa5QgghRIVVauLMmkxabkracCyWWb+cKO5cDBDgpmfmwDAaeDoQdd/D9D6wESMqNk15h97vviR3TwkhhLA4U96/KxVuzpw5w/bt20lISMBoNJZ4bsaMGabuzqIk3JRmMCrsi0wmISMXXxc9nUI9iwNMTm4BRwaNoMvmHwD4cvgUBi54Ez/X0n12hBBCCHMxa7hZtGgRTz31FN7e3vj7+6NS/fspXqVScejQocpVbSESbipBUYh45AkarFoMwAf9nqT9R29wRxNfKxcmhBCitjBruKlXrx5PP/00L7300i0VaS0SbipJUUiZNAWPT+YC8F6PkRhffpnJvRtjpzF5uCQhhBDCJGYdxC8lJYUHH3yw0sWJGkqlwuOj9ymY+ToAU//8Bsc3XufhhXu4lCozigshhKg+TA43Dz74IJs2bTJHLaK6U6mwe30mvPceABP2rKbfsvcZ8NFONp+It3JxQgghRBGTRyhu2LAhr732Gnv37qVly5bY2dmVeP65556rsuJENTVlCuj1MGECT+z/CV1hAf/LeZLHezTgpX5NsdfKZSohhBDWY3Kfm9DQ0BvvTKXi/Pnzt1yUOUmfmyq0eDHKE0+gUhS+a3k30/pNoGVdTz4b0Y5gT0drVyeEEMKGmP1W8JpMwk0VW7ECRo8Gg4H1Le7guX6TcHDSM+f+VvRvGQCUf6u5EEIIURFVPkLxjVzLRf+9HVzUMo88UnSJ6uGHGXBsO54aIyN7P89TKw4xqms9OtTzYPbvp8ocJLBfiwArFi6EEMJWVapzxNdff03Lli1xcHDAwcGBVq1a8c0331SqgHnz5hEaGoper6d9+/b8+eef5a6/YsUKWrdujaOjIwEBATz22GMkJSVV6tiiitx/P6xdC/b2dDmyk993fIiuMJ+v90Tz3LeHSwQbgLi0XJ5afogNx2KtVLAQQghbZnK4mTt3Lk899RQDBgzgu+++Y/Xq1fTr14/x48fz4YcfmrSv1atXM2nSJF555RXCw8Pp0aMH/fv3JyYmpsz1d+3axahRoxg7dizHjx/n+++/Z//+/YwbN87UlyGq2r33wq+/goMDDffvZM9fH+JYkFvmqteug8765QQGY626KiqEEMICKtWheNasWYwaNarE8q+++orXX3/dpEk2O3fuTLt27Zg/f37xsmbNmjF48GBmz55dav3333+f+fPnExERUbzs008/Zc6cOVy4cKFCx5Q+N2a2Y0dR0MnMZF9QGI8/8DqZuht3Ll71RBe6NvCyYIFCCCFqIrMO4hcbG0u3bt1KLe/WrRuxsRW/zJCfn8/Bgwfp06dPieV9+vRh9+7dZW7TrVs3Ll68yPr161EUhfj4eH744QfuueeeGx4nLy+P9PT0Eg9hRj17wubNFDi70uniCZavfhXX3Mwbrp6QUXbrjhBCCFFZJoebhg0b8t1335Vavnr1aho1alTh/SQmJmIwGPDz8yux3M/Pj7i4uDK36datGytWrOChhx7C3t4ef39/3N3d+fTTT294nNmzZ+Pm5lb8CA4OrnCNopK6dOHk8rUkO7jSJvYMq1a9jGd2Wpmr+rrIBJxCCCGqlsnhZtasWcyYMYN+/frx5ptv8tZbb9GvXz9mzZrFG2+8YXIB199ppSjKDe++OnHiBM899xwzZszg4MGDbNiwgcjISMaPH3/D/U+fPp20tLTiR0UvX4lb03xgLyY88QGJju40TzjPtyun45OZXGIdNwc7OoV6WqlCIYQQtsrkcHP//ffz999/4+3tzU8//cSaNWvw9vZm3759DBkypML78fb2RqPRlGqlSUhIKNWac83s2bPp3r07U6dOpVWrVvTt25d58+axZMmSG14S0+l0uLq6lngI89OoVYx84h4eGvF/xDp70Tgphu9WvkSzhH8HeUzLKeCNX45TYDBasVIhhBC2plLj3LRv357ly5ff0oHt7e1p3749mzdvLhGKNm/ezH333VfmNtnZ2Wi1JUvWaDTAv2PuiOqjX4sAmDiIZ90d+fiLKYSmxPLT15NZ0HccEcPHsu5YPF/tieZ0fAafj2iHl7PO2iULIYSwARW6Wyo9Pb24xeNmHXJNaRlZvXo1I0eOZMGCBXTt2pUvvviCRYsWcfz4cerVq8f06dO5dOkSX3/9NQDLli3jiSee4JNPPqFv377ExsYyadIk1Go1f//9d4WOKXdLWZ7BqHDowBmCpk4gYOfmooV9+rB9+hye2RpLVr6BQHcHvhjVnuZ13KxbrBBCiGqpyqdf0Gg0xMbG4uvri1qtLrNPzLW+MgaDwaRi582bx5w5c4iNjaVFixZ8+OGH3H777QCMGTOGqKgotm/fXrz+p59+yoIFC4iMjMTd3Z0777yTd999l8DAwAodT8KNFSkKLFgAkydDbi54e3N57ueMiPMhKikbvZ2a9x5ozcDWdaxdqRBCiGqmysPNjh076N69O1qtlh07dpS7bs+ePU2r1sIk3FQDJ0/C8OFw5AgAeU88yTNtR/BHdAYAT93RgCl9msj8U0IIIYrJxJnlkHBTTeTlwcsvw9y5ACjNmrHk6bd586I9AHc08eHjh9vi5mBnzSqFEEJUE2YdxG/Dhg3s2rWr+OfPP/+cNm3aMGLECFJSUkyvVtROOh188AFs3Aj+/qhOnmTsCw/zS+F+9BrYfvoKQz7/i3MJGdauVAghRA1jcriZOnVqcafio0ePMnnyZAYMGMD58+eZPHlylRcobFyfPnD0KAwaBPn5tPxgFvv/mktLVRbnE7MY/Plu/jgRb+0qhRBC1CAmh5vIyEjCwsIA+PHHHxk4cCDvvPMO8+bN4/fff6/yAkUt4O0NP/0E8+eDgwMuO7by86JneCrtOJl5hTzxzQE+23pWbvcXQghRISaHG3t7e7KzswH4448/iueG8vT0lHmbROWpVDB+PBw8CK1bo05K5KUFL7H68Ffo8nN5f9MZnll5iKy8QmtXKoQQopozOdzcdtttTJ48mTfffJN9+/YVT1p55swZgoKCqrxAUcs0awZ//w0vvABA543f8/eaabRKPM/6o3HcP383F5KzrVykEEKI6szkcPPZZ5+h1Wr54YcfmD9/fvH4Mr///jv9+vWr8gJFLaTTwfvvw6ZNEBCAW9Q5fvpmChOP/MLp2DQGfbaL3ecSrV2lEEKIakpuBRfVW2IijB0L69YBEN60I/+7awLJrl68MqAZj3UPwajAvshkEjJy8XXR0ynUU8bIEUIIG2P2cW6MRiPnzp0jISEBo7HkpIfXRheuriTc1ECKAl98Ac8/Dzk5ZLq4M6n3BP5o1JkuoV5EJWUSl55XvHqAm56ZA8OK5rYSQghhE8wabvbu3cuIESOIjo4udfdKZaZfsDQJNzXYyZMwYgQcPgzA8jb9eevOseTa6Uusdq3NZv6j7STgCCGEjTDrIH7jx4+nQ4cOHDt2jOTkZFJSUoofycnJlS5aiJtq1gz27i3ubPzo4d/55avnCYs/X2K1a5F71i8nMBhr1VVXIYQQVKLlxsnJiSNHjtCwYUNz1WRW0nJjG058vQavZ57ALzOZfLWWOT1HsbjjYBRVyby+6okudG3gZaUqhRBCVBWzttx07tyZc+fOVbo4IarC2Vad6ffYp2xq1AV7YyGvblvCtyun0+7SyRLrJWTkWqlCIYQQ1qI1dYMJEybwwgsvEBcXR8uWLbGzKzmxYatWraqsOCFuxNdFT4qjG/8b8grDj2xkxpZFdL54nDXLp7KpURfe6zGSsz71+OHgRdoGe1DXy9HaJQshhLAQky9LqdWlG3tUKhWKokiHYmExBqPCbe9uJS4tFwUISL/CxL9W8eDRP9AoRoyoWNuiFx/e9ghxHv4M6xjMhDsbEuDmYO3ShRBCVIJZ75aKjo4u9/l69eqZsjuLk3BjOzYci+Wp5YeAfzsRN0i8wJQ/v6H/md0AFGq0fNOmP593HUa6mxePdK7L03c0xMdFZ6WqhRBCVIbZx7mpySTc2JYNx2KZ9csJYtP+7VsT4Kbng9B8ui2eC3/8AUCuzoEv2g1iUeehFDq7MqZ7CE/eXh93R3trlS6EEMIEZg8333zzDQsWLCAyMpI9e/ZQr149PvroI0JDQ7nvvvsqXbglSLixPQajcuMRirdsgenTYf9+ANIdXfmk8wN80/Ye7J2dGNsjlLG3heKityvnCEIIIazNrHdLzZ8/n8mTJzNgwABSU1OL+9i4u7vz0UcfVapgIW6FRq2iawMv7msTSNcGXiWnXrjrrqKJOH/8EZo1wzU7nVe3LWHXkvEM2Pcbn246RY8521iwI4LsfJlxXAghbIHJLTdhYWG88847DB48GBcXF44cOUL9+vU5duwYd9xxB4mJ1XtCQ2m5qcUKC+Gbb2DmTLhwAYAYn2Bmd3uE35t0x9tFzzO9GjC8U130dprizcptGRJCCGERZr0s5eDgwKlTp6hXr16JcHP27FlatWpFTk7OLRVvbhJuBLm5sGABvP120cScwKnAxrzd/VH+DGlLgLsDE+5sxIMdgthyMr7MPj0yd5UQQliWWS9LhYaGcvjq3D7/9fvvvxMWFmbq7oSwPL0eJk2CiAh4/XVwdqbppTN8890MfvjhNfxOHuHltUfpOnsL45cfKhFsAOLScnlq+SE2HIu1SvlCCCHKZ3K4mTp1Ks888wyrV69GURT27dvH22+/zcsvv8zUqVPNUaMQ5uHqWnSJ6vz5orBjb0+H84f56ZsXWLruHdyjyh6JW+auEkKI6q1Sd0stWrSIt956iwtX+y0EBgby+uuvM3bs2CovsKrJZSlxQzExRS05X30FRiMGlZo1ze/ko9tGcMnNt8xNZO4qIYT4lzn7KFpsnJvExESMRiO+vmX/4a+OJNyImzp5ksvPvkCdrb8DkKfRsqLNAL7oNJQ4V+8Sq378cBvuaxNojSqFEKJaudG4Y1XVR1EG8SuHhBtREXsikvi/WV8xdefX3BZ9BACDSs2O0Hasbt2HLQ06UajR0r6eBy/0aUzX+l6oVHIHlRCidro2Yvz1geLaX8X5j7a75YBj1nCTlJTEjBkz2LZtGwkJCRiNxhLPJycnm16xBUm4ERXx37mrukUd5tk9q+kac7T4+SuO7vzY8i5Wt+pDpGcgTf1deKx7CPe1CSxxG7kQQti6a38vr7/54hoV4O+mZ9dLd97SJSqzhpv+/fsTERHB2LFj8fPzK/VpdfTo0aZXbEESbkRFXT93VUjyJR76ZzMPHPsDn6zU4vX2123BypZ9+L1JNxzcXBjRuS4ju4Tg76a3TuFCCHEDVdEnJiuvkDPxGZyJz+BUXAb7IpM5fjkdtdFAg6SLtIo7h86Qz8o2/Utsd6t9FM0ablxcXNi1axetW7eudIH/NW/ePN577z1iY2Np3rw5H330ET169Ljh+nl5ebzxxhssX76cuLg4goKCeOWVV3j88ccrdDwJN8IUZV1DDnLW8onLJdr9sRbWr4errZcZeifWNruD1a37cDqgIf1bBvBY9xDa1fWwVvlCCFHM1D4xBQYjkYlZnI7L4HRcUZA5E59BTHI2KsVIaPJlWsadpVXcOVrGnaVFfASOBXkAxDl70uWZr0vs71b7KJry/q01dedNmzatsoH6Vq9ezaRJk5g3bx7du3dn4cKF9O/fnxMnTlC3bt0ytxk2bBjx8fEsXryYhg0bkpCQQGGhDJsvzKNfiwB6h/mX/Uln4uNw6RIsWwaLF+MSGcmo8N8YFf4bR/0asLpVH8b83ZPQRkE83j2E/i0CsNeWHH1BRj8WQljCjfrEXBu3663BLQhw13PqapA5HZfB+StZ5BuMoCjUTY2jVdxZHok7R6u4s7SMj8A5L7vUcTLtHTju14B//BuiNRRSqPk3Zvi6WK412+SWm/379zNt2jRmzJhBixYtsLMrOeGgKa0hnTt3pl27dsyfP794WbNmzRg8eDCzZ88utf6GDRt4+OGHOX/+PJ6enqaUXUxaboRZGI2wbRt8+SWsWQP5+QDkau35rUl3VrfuS1SzdozsGsLwznXxdtaZ/c4CIYSAm/eJKUFRCEpPoGVsUYtMm4RztIw7h3NOZul1HRygbVuM7dvzZpwjf7qGcN6zDkZ1yX6H1uhzY3LLjbu7O2lpadx5550lliuKgkqlKp5I82by8/M5ePAg06ZNK7G8T58+7N69u8xt1q1bR4cOHZgzZw7ffPMNTk5ODBo0iDfffBMHB4cyt8nLyyMvL6/45/T09ArVJ4RJ1OqiSTrvuguSkmD5cli0CP3x49x/fBv3H99GhGcg323pzcDWvQkJq8+e80mldnPtU1RV3FkghBDZ+YWs2BtTdrBRFPwzkopaYuLO0SnpPM0vn8U5M7X0ujodtGkDHTr8+2jaFLRa1EDnY7Esu9pH8b+uRZmZA8Ms2iptcrh55JFHsLe3Z+XKlWV2KK6oxMREDAYDfn5+JZb7+fkRFxdX5jbnz59n165d6PV61q5dS2JiIk8//TTJycksWbKkzG1mz57NrFmzKlWjEJXi5QUTJ8Jzz8G+ffDllyirVtEg+RLTty9jys5v2NKwE7pWfdgZ2q7EpxyFoj8Gs345Qe8wf7lEJUQtc6uXqlOz89kflcL+qGT+jkzm+KU0Co0KKsVIvZRYmiVE0iwhkuYJ52kVd7bEzRHF7OygVauSQaZ586LlN9CvRQDzH21XqjXa30qt0SZflnJ0dCQ8PJwmTZrc0oEvX75MYGAgu3fvpmvXrsXL3377bb755htOnTpVaps+ffrw559/EhcXh5ubGwBr1qzhgQceICsrq8zWm7JaboKDg+WylLCsjAz47juUL79EtXdv8eJYZy++b3k337XqzUV3/xKbyOjHQtQulblUHZuWw77IZPZHJbM/MoXT8Rk45WXT5Eo0YVciaZZwnpaJ0TSIj8SpoHTrTaFKzWmfEI76N6TTA72p3/8OaNmyqKWmEqrLCMUmt9x06NCBCxcu3HK48fb2RqPRlGqlSUhIKNWac01AQACBgYHFwQaK+ugoisLFixdp1KhRqW10Oh26Sv6ShKgyLi4wdiyqsWPZ+sMWIt/9lKHHthKQmcRze1bz3J7VnPQJYUf99uwIbc+BoGZ8uz8GTyd7Gvs5ywCBQti4m3X4nf9oO/o29ycyMau4VWZ/ZBJKZBRhV1tjnr8SSdOEKEJSy57UN1drzymfepzyCeWEbyj/BDTmpE8I+Xa64j4x3GIQ0ahV1eJDmcnhZsKECUycOJGpU6fSsmXLUh2KW7VqVaH92Nvb0759ezZv3syQIUOKl2/evJn77ruvzG26d+/O999/T2ZmJs7OzgCcOXMGtVpNUFCQqS9FCKtwaNuGN+96gnd7jqHP2T08dGQT3aOP0OxKFM2uRDH+7x/JtHdgd73WfB3ajhOtutG4c0t6NvGhe0Nv3Bxu3DQshKh5DEaFWb+cKBVs4N+Jeqct38vKlIvUiT5DsyuRPJwQyesJUbjml75jCYDAQGjduvjxp0MAY3alYlRrShzHWn1izM3ky1JqdemJxFUqlckdiqHoVvCRI0eyYMECunbtyhdffMGiRYs4fvw49erVY/r06Vy6dImvvy66Vz4zM5NmzZrRpUsXZs2aRWJiIuPGjaNnz54sWrSoQseUu6WEtf139ONr//k8stPoEXWYnpEHuf38IXyyU0tsE+EZxPb67fmzQXvyu95G1xZB9GziQ4s6bqjL+YMkt5oLUf3tiUhi+KKiy9UqxUhg+hUaJcbQLCGyuFUmJOUyGsVYalvF3h5VWFiJIEOrVuDtXWrdmn6HplkH8YuOji73+Xr16pmyO+bNm8ecOXOIjY2lRYsWfPjhh9x+++0AjBkzhqioKLZv3168/qlTp5gwYQJ//fUXXl5eDBs2jLfeeuuGd0tdT8KNqA6uH/34GhVFf9yWt7en27mDGH//HdWePaj+86EhV2vP3uCWbK/fnsPNu1CvS2t6NvGlRyMffFx0JY5Rk/+QCVFd3eqHBkVRiEvOJGLPEZIOHCHlwBFco87RKDGGBskXiwfCu16Wuxf6Dm3RtGnzb5Bp2rTcjr5VXbs1ycSZ5ZBwI6qLCoeP1FTYsgU2bKDwt/VoYy+X2E+Mmx/b63dgR/12pHXpTueW9dBrNczdfMask9gJURuZ+qFByckh4eBRYveGk3P4HzSnT+MVc47gxEvYG8segDZPoyXSI5CTvqElHp9O6l8t+rNYS5WHm3Xr1tG/f3/s7OxYt25duesOGjTItGotTMKNqE5M/hSlKHD8OGzYgPH3DfDnTtQFBcVP56u17A8OY3toUdg5410PruuMXFUDaglRXZmrdaK8ma8d83P4opMzTZMvkHroH4zHT+By/gw+V8q+nASQa6/nSlB98ho1YYPBnX9cAznrFUyMuz+G/wwRIf9ni1R5uFGr1cTFxeHr61tmn5vinZnY58YaJNwIm5KZWTQy8oYNGNavRxMVVeLpWGcvdtRvz+56rfnHvyHRHgEoqqL/wwsfbUdfab0RNsZcl2MNRoUes/9AuXSJkJRY6qVcpmHSBRolXaBB0gWC0q/ccNs0vRMXA0LJCm2EunkY7u1bEdS9A/r6IUUDgFL+pWqQ1laQy1LlknAjbJaiwLlzHF20isQf19E15ij6wvwSq6TbO3LCrz7H/BpwzL8hSY3DcG/bktb1vGgd7E7zOq442lf8JsqafP1e2J7yWlagggGhoIC8iEjSj50k+8RpDGcj0EZGYBd1Hs+4i+gMBTfc9IqTO2e96pJctz6FTZrh1KYlAV3b0bBlA/QV+H8l/eTKJ+GmHBJuhK27dueFriCPThePc8f5g7S7dIpmVyJLhR2AbDsdJ3yLAs9x/4ZkNm+FR/tWtAz1oXWQO439nNFqSrfYyh9iUZ3cbP4kFeDnpufbJ7qQnJRG5smz5J8+i+r8OXRRkbheisErLga/5Di0N7iMBFCg1nDBzY8Y9wDOeQVxziuYs951OecVTJqDCx882Ir72wff0uuQDwxlM1u4MRqNLFu2jDVr1hAVFYVKpSI0NJQHHniAkSNH1oiBxiTcCFtX1q3mAFpDIQ2SL9IiLoLOKZEMIQH14cNockqPk5GnseOkbyjH/Bpwuk4jclu1waNTW1rU96VNkDvHL6fx9Ipb/IQsai1zvIHvPpfIiC//Lv7ZOS+buqlx1E2NLb6MFJIaS92UOAIyElGXOapMkVytPdEeAST4BJFSpy5ZwSEk+ATyfZqeWFefEv1hricji5uPWcKNoigMHDiQ9evX07p1a5o2bYqiKJw8eZKjR48yaNAgfvrpp6qo36wk3IjaoMLX7w0GOHMGDh2CQ4fI/3s/qiOHscvMKLXPfLWWMz71OHq1heeYXwNO+oSQZ1dyBHDp/CjKcystfll5hVxIyebi5WSST58nKyKKwqhoNBcv4hB/Gf/0K9RJv0JAeuKNB7e7ti+9E0n+wWQE1iOvXihKwwbYN26EU/OmeDUKwdXRvsQH9ht9aLhG/t2bn1nCzdKlS5k4cSI///wzvXr1KvHc1q1bGTx4MJ999hmjRo2qfOUWIOFG1BaVfhMxGuH8eTh4EOXgQXL+PoD28CHs09NKrVqoUnPWuy4RnkFcdPfjopsfF64+hg7pRp/2IdTzckSnvfEn3fJIE711WONuI4DPR7SjXaALcaciSTkdQVZEFIboaLQXL+KYEItXSjwB6YmlBrm8kWQHV6I8AojyqEOMuz9RHnUYO/puWvZsXzTInYlXG6TTr3WZJdz06dOHO++8k2nTppX5/DvvvMOOHTvYuHGj6RVbkIQbUZtU2ZuUokB0NBw6xKlftxG3fQ8t4s/hnV068PxXvLMnF918SfYJJC8oGFX9+jg1boBXiyYEtWqCh4fzDbc1d58ecwenmrp/c533nLxC7n3zF5T4BLyyU/HKTsMvM5mA9CvUyUgsbnHxy0wqt8/LNfn2OjJ861BQJxBV3WB0oSF8fi6f03ZuXHL1IdbFm2z7fwd3raqWFelrZj1mCTf+/v5s2LCBNm3alPl8eHg4/fv3LzURZnUj4UaIW1M8VLyi4J+RRPOECEJSYglKiycoLZ7g1HiC0+LLnIH4vwwqNVdcvUj2qUNuUF0ICcGhcUM8mzfhuL0nT2yNLdW3oao+IZv7Daqm7r+idxsZjAqp2fmkJqeTcSGO7IuXyL8chyEuHhISUCdewT4pEYfUJJzTknHLSMEjK+2Gg9Zdr1CtIcXDhyzfAAoCg1HXDcahfghuTRrg1DAUgoPB07NUy4ulWlakRdE6zBJu7O3tiY6OJiCg7H8Yly9fJjQ0lLy8soeNri4k3AhxayrU98BVx65xrVFHR5F+4gwpJ8+SdzYCdXQ0jpdi8E6MRVfGnVv/VaDWEOvizUU3P5Id3UjVO5Pq4EKazplCd3fG3NsOBz8fdL4+OPj7YO/rDXr9TeuvktuFbWD/BqNCZl4hGbkFpGflk3klmRnLd2NITcclPxvnvGxc87LwzE7DKzsN7+xUfLLT8MlJwz0zBa+stJv2aylLur0jiU7uJDm6k+jkTqyLd1FLy9XWlv89cjv9e7cDTeUuZUrLiu0yS7jRaDTExcXh4+NT5vPx8fHUqVNHBvEToha45U/IikJ2zCVij5wi5fhpcs5GoIqKwuHSBbyuXKZOWkKFP+X/V67WngxHFzKdXMlxdiPH2Y08V3cK3NwxuHtgcHNnY2w+sRpHUvXOpDm4kK5zokCtpVCjoUCtxddVz0/PdMfRXoO9Vo1Oq6nwp/KK3I5c2UsjRqNCToGBOz/YTnx6HigKWqMBx4JcXPKycb4aSPzIY1CoM8b0dEhNQ5WRgSYjHU1WJvZZGdhnZ6HPycIxNwvnq9u55OeYVMt/FWi0pLt4kOnmSa67F/le3hh8fFH5+qLx90NXxx+HoADOqxx54vcY8rT25e6vKu42kpYV22SWcKNWq+nfvz86na7M5/Py8tiwYYOEGyFqCXN9Ql4bfokXVh3ENzOFoPR4AtMS8MjJwC03E/fcq19zMvDKy8Q1JwPXq89VpJ9GRRSoNRRotBSqteRrtFeDT9HDoNVSqLHDqNVi0P77VdHaYbSzI0+lIT7XSKFaS4Gm6AFgZyhEazRgZyxEazDgo1ejUwyoCwtRFxagNhQWfW8oRFNYgMZQePVhQGMoRHt1e62hEDujAa2x6GtVy1drydA5kqlzJNO+6GuioxtJju4kObqR5OTO7d3D6NS5Kc51A9EG+IObW4U65srdRuJWmfL+XeGhSEePHn3Tdar7nVJCiKrTr0UAvcP8q/wTsr+rHqNaQ5yrN3Gu3hwIal7meque6ELrBl4UGoxk5RaSlZRCbvwVchMSKbySiCExCWNSEiQno05JQZ2WSn5CIsakZNxyMnDPzcAjJ6PUiLN2RsPV4FC9L7H/V67Wngx7RzJ1DmTaO6J2c0Pr4YbR2QXF1RWVmxtqN1e0Hu7Yebih8/RA7+WOg5cH9p4e4OrK3sQCHv768E2Pdc8jXXCvRMuKRq1i5sAwnlp+CBVlt/jNHBgmwUZUiQqHm6VLl5qzDiFEDaRRq6p8wLJOoZ4EuOlv+gm/U6gnAFqNGjcne9yc/KCuX7n7Lu4M/R92hgK0hqJWlaIWlkLmP9iSVn6OFOTmUpCTT0FuLoU5+RTm5lKQm48hL4/Cq18NuXkY8/Ix5OVzJTmD/Wfjsb/WUmMourRWWNwapKFQraVTY198PV1Q2dujtrdDo7NDbW+PWmePxt4ejU6HVmePRmeHRqfDTm+PVqfjRGIOU38+QcHV/RRotOTY6SjQ2JV4TZW5tNPRWyHA7VSFz3tl9GsRwPxH25Vq8fOXPjGiilV8EhkhhLAAc37CLys4FWjsKNDYkcO/b+Ctb2+LRq1CCzjceHelGIwKr1fg0ssrlbz00smoYAjPIsEMAcRSLSvmavET4r9uPMW3EEJYybVP+P5uJe9+8nfT39LdRtfewOHfN+xrquINvKbv31zn/XrXWvzuaxNI1wZeEmxElZOJM4UQ1VZNG6jOVvYvdxuJ6khmBS+HhBshBNTcEYQttX8hqhuz3C0lhBC2xBydoW1p/0LUZLUu3FxrqEpPT7dyJUIIIYSoqGvv2xW54FTrwk1GRgYAwcHBVq5ECCGEEKbKyMjAzc2t3HVqXZ8bo9HI5cuXcXFxQWXidPei8tLT0wkODubChQvS18nC5Nxbj5x765Fzbz3mOveKopCRkUGdOnVQq8u/2bvWtdyo1WqCgoKsXUat5erqKn9orETOvfXIubceOffWY45zf7MWm2tknBshhBBC2BQJN0IIIYSwKRJuhEXodDpmzpx5w1nlhfnIubceOffWI+feeqrDua91HYqFEEIIYduk5UYIIYQQNkXCjRBCCCFsioQbIYQQQtgUCTdCCCGEsCkSbkSVmTdvHqGhoej1etq3b8+ff/5Z7vp5eXm88sor1KtXD51OR4MGDViyZImFqrUtpp77FStW0Lp1axwdHQkICOCxxx4jKSnJQtXajp07dzJw4EDq1KmDSqXip59+uuk2O3bsoH379uj1eurXr8+CBQvMX6iNMfW8r1mzht69e+Pj44Orqytdu3Zl48aNlinWxlTm3/w1f/31F1qtljZt2pitvmsk3IgqsXr1aiZNmsQrr7xCeHg4PXr0oH///sTExNxwm2HDhrFlyxYWL17M6dOnWbVqFU2bNrVg1bbB1HO/a9cuRo0axdixYzl+/Djff/89+/fvZ9y4cRauvObLysqidevWfPbZZxVaPzIykgEDBtCjRw/Cw8N5+eWXee655/jxxx/NXKltMfW879y5k969e7N+/XoOHjxIr169GDhwIOHh4Wau1PaYeu6vSUtLY9SoUdx1111mquw6ihBVoFOnTsr48eNLLGvatKkybdq0Mtf//fffFTc3NyUpKckS5dk0U8/9e++9p9SvX7/Esk8++UQJCgoyW421AaCsXbu23HVefPFFpWnTpiWWPfnkk0qXLl3MWJltq8h5L0tYWJgya9asqi+oFjHl3D/00EPKq6++qsycOVNp3bq1WetSFEWRlhtxy/Lz8zl48CB9+vQpsbxPnz7s3r27zG3WrVtHhw4dmDNnDoGBgTRu3JgpU6aQk5NjiZJtRmXOfbdu3bh48SLr169HURTi4+P54YcfuOeeeyxRcq22Z8+eUr+rvn37cuDAAQoKCqxUVe1jNBrJyMjA09PT2qXUCkuXLiUiIoKZM2da7Ji1buJMUfUSExMxGAz4+fmVWO7n50dcXFyZ25w/f55du3ah1+tZu3YtiYmJPP300yQnJ0u/GxNU5tx369aNFStW8NBDD5Gbm0thYSGDBg3i008/tUTJtVpcXFyZv6vCwkISExMJCAiwUmW1ywcffEBWVhbDhg2zdik27+zZs0ybNo0///wTrdZykUNabkSVUalUJX5WFKXUsmuMRiMqlYoVK1bQqVMnBgwYwNy5c1m2bJm03lSCKef+xIkTPPfcc8yYMYODBw+yYcMGIiMjGT9+vCVKrfXK+l2VtVyYx6pVq3j99ddZvXo1vr6+1i7HphkMBkaMGMGsWbNo3LixRY8tLTfilnl7e6PRaEq1FCQkJJT6lHpNQEAAgYGBJaavb9asGYqicPHiRRo1amTWmm1FZc797Nmz6d69O1OnTgWgVatWODk50aNHD9566y1pPTAjf3//Mn9XWq0WLy8vK1VVe6xevZqxY8fy/fffc/fdd1u7HJuXkZHBgQMHCA8P59lnnwWKPtgqioJWq2XTpk3ceeedZjm2tNyIW2Zvb0/79u3ZvHlzieWbN2+mW7duZW7TvXt3Ll++TGZmZvGyM2fOoFarCQoKMmu9tqQy5z47Oxu1uuR/fY1GA/zbiiDMo2vXrqV+V5s2baJDhw7Y2dlZqaraYdWqVYwZM4aVK1dK/zILcXV15ejRoxw+fLj4MX78eJo0acLhw4fp3Lmz+Q5u9i7Lolb49ttvFTs7O2Xx4sXKiRMnlEmTJilOTk5KVFSUoiiKMm3aNGXkyJHF62dkZChBQUHKAw88oBw/flzZsWOH0qhRI2XcuHHWegk1lqnnfunSpYpWq1XmzZunREREKLt27VI6dOigdOrUyVovocbKyMhQwsPDlfDwcAVQ5s6dq4SHhyvR0dGKopQ+9+fPn1ccHR2V559/Xjlx4oSyePFixc7OTvnhhx+s9RJqJFPP+8qVKxWtVqt8/vnnSmxsbPEjNTXVWi+hxjL13F/PUndLSbgRVebzzz9X6tWrp9jb2yvt2rVTduzYUfzc6NGjlZ49e5ZY/+TJk8rdd9+tODg4KEFBQcrkyZOV7OxsC1dtG0w995988okSFhamODg4KAEBAcojjzyiXLx40cJV13zbtm1TgFKP0aNHK4pS9rnfvn270rZtW8Xe3l4JCQlR5s+fb/nCazhTz3vPnj3LXV9UXGX+zf+XpcKNSlGkHVoIIYQQtkP63AghhBDCpki4EUIIIYRNkXAjhBBCCJsi4UYIIYQQNkXCjRBCCCFsioQbIYQQQtgUCTdCCCGEsCkSboQQQghhUyTcCCGEEMKmSLgRQgghhE2RcCOEEEIIm6K1dgGWZjQauXz5Mi4uLqhUKmuXI4QQQogKUBSFjIwM6tSpg1pdfttMrQs3ly9fJjg42NplCCGEEKISLly4QFBQULnr1Lpw4+LiAhSdHFdXVytXI4QQQoiKSE9PJzg4uPh9vDy1LtxcuxTl6uoq4UYIIYSoYSrSpUQ6FAshhBDCpki4EUIIIYRNkXBT1RTF2hUIIYQQtZqEm6py4QI89RQMG2btSoQQQohardZ1KDabggJYuLCo5ebcOWjY0NoVCSGEELWStNxUlfr1oX//ou/nz7duLUIIIUQtJuGmKj39dNHXJUsgO9u6tQghhBC1lISbqtSvH4SGQmoqfPuttasRQgghaiUJN1VJoynqVAzw+edy55QQQghhBRJuqtpjj4FOB4cOwd9/W7saIYQQotaRcFPVvL3h4YeLvp83z7q1CCGEELWQhBtzeOaZoq+rV8OVK9atRQghhKhlJNyYQ8eO0KED5OfD4sXWrkYIIYSoVSTcmMu11psFC8BgsG4tQgghRC0i4cZcHnoIPD0hOhrWr7d2NUIIIUStIeHGXBwc4PHHi77//HPr1iKEEELUIhJuzOmpp0Clgo0bi+abEkIIIYTZSbgxJ5lvSgghhLA4CTfmJvNNCSGEEBYl4cbcZL4pIYQQwqIk3JibzDclhBBCWJSEG0uQ+aaEEEIIi5FwYwky35QQQghhMRJuLEXmmxJCCCEsQsKNpch8U0IIIYRFSLipQrFpOeyOSCQ2LafsFWS+KSGEEMLsJNxUkdX7Y+j+f1sZsehvuv/fVlbvjym9ksw3JYQQQpidhJsqEJuWw/Q1RzFevcvbqMDLa46VbsGR+aaEEEIIs5NwUwUiE7OKg801BkUhKrGMEYllvikhhBDCrCTcVIFQbyfUqpLLVEA9L4fSK8t8U0IIIYRZSbipAgFuDswe2hKN6t+EowBrDl0qewOZb0oIIYQwGwk3VeShjnXZNa0Xq57owsS7GgHw/qYzfLMnqvTKMt+UEEIIYTYSbqpQgJsDXRt48Xzvxjx3NeDMWHecnw9f14Kj0cD48UXfy3xTQgghRJWScGMmz9/diDHdQlAUmPzdEbacjC+5wuOPy3xTQgghhBlIuDETlUrFjHvDGNo2EINR4ekVh9h7PunfFWS+KSGEEMIsJNyYkVqt4t0HWnF3Mz/yCo2M++oARy+m/bvCtY7FMt+UEEIIUWUk3JiZnUbNZyPa0qW+J5l5hYxeuo9zCZlFT3bqJPNNCSGEEFVMwo0F6O00fDm6I62C3EjOymfk4r+5mHL1FnCZb0oIIYSoUhJuLMRZp2XZY51o6OtMbFouIxfv40pGnsw3JYQQQlQxCTcW5OlkzzdjOxHo7kBkYhajl+wjDa3MNyWEEEJUIQk3Fhbg5sCKcZ3xdtZxIjadcV/tJ/fxJ2S+KSGEEKKKSLixghBvJ75+vBOuei37o1J4ck8qxr59i56U+aaEEEKIWyLhxkrC6riy9LGO6O3U7DhzhYUt+hU9IfNNCSGEELdEwo0Vta/nycKRHbDTqHhPFUqyb6DMNyWEEELcohoXbmbPnk3Hjh1xcXHB19eXwYMHc/r0aWuXVWk9G/vw0UNtQaNhYVjvooUy35QQQghRaTUu3OzYsYNnnnmGvXv3snnzZgoLC+nTpw9ZWVnWLq3S7mkVwDtDWvJdy97kaexkvikhhBDiFqgUpWY3EVy5cgVfX1927NjB7bffftP109PTcXNzIy0tDVdXVwtUWHELd0Tg9eyTPHBsC5H9hxK6/kdrlySEEEJUC6a8f9e4lpvrpaUVzdXk6elZ5vN5eXmkp6eXeFRXT/ZsQPa4/wFQZ9M6Nm47auWKhBBCiJqnRocbRVGYPHkyt912Gy1atChzndmzZ+Pm5lb8CA4OtnCVphn53INcbNAcnaGQf974gO2nE6xdkhBCCFGj1Ohw8+yzz/LPP/+watWqG64zffp00tLSih8XLlywYIWmU6lU1Hn5BQCGH/qdp7/ex4GoZCtXJYQQQtQcNTbcTJgwgXXr1rFt2zaCgoJuuJ5Op8PV1bXEo7pTD38YxdOToPQEup7ex2PL9nP8cpq1yxJCCCFqhBoXbhRF4dlnn2XNmjVs3bqV0NBQa5dU9RwcUF2db2rCyU1k5BYyesk+/j6fxO6IRGLTcqxcoBBCCFF91bi7pZ5++mlWrlzJzz//TJMmTYqXu7m54eDgcNPtq/PdUiVERECjRqAojH1lJVsK/61VrYLZQ1vyUMe6VixQCCGEsJxqebdUYWEhf/zxBwsXLiQjIwOAy5cvk5mZadJ+5s+fT1paGnfccQcBAQHFj9WrV5ujbOtp0AD6FU3J8O6Vv0o8ZVTg5TXHpAVHCCGEKIPWEgeJjo6mX79+xMTEkJeXR+/evXFxcWHOnDnk5uayYMGCCu+rhjU03ZpnnoHff8f92+Xox/Ui105f/JRBUYhKzCbA7eatVUIIIURtYpGWm4kTJ9KhQwdSUlJKXDoaMmQIW7ZssUQJNVO/fhAaijY9jftO7izxlFoFId6OVipMCCGEqL4sEm527drFq6++ir29fYnl9erV49KlS5YooWbSaGD8eABeityKmn9brYa0DZRWGyGEEKIMFgk3RqMRg8FQavnFixdxcXGxRAk11+OPg06H56lj7LvbhZFd6gHw59lEsvMLrVycEEIIUf1YJNz07t2bjz76qPhnlUpFZmYmM2fOZMCAAZYooeby9oaHHir69uvFvHpvM4I9HUjIyGPJrkgrFyeEEEJUPxa5Ffzy5cv06tULjUbD2bNn6dChA2fPnsXb25udO3fi6+tr7hKK1Zhbwf9r3z7o3Bns7eHiRX6+lM/Ebw/jrNOyY+odeDnrrF2hEEIIYVbV7lbwOnXqcPjwYaZOncqTTz5J27Zt+b//+z/Cw8MtGmxqrE6doEMHyM+HL79kYKs6tAx0IzOvkE+3nrN2dUIIIUS1UuMG8btVNbLlBuCrr2DMGHBxgX/+YbfBmRGL/karVvHH5J6EeDtZu0IhhBDCbKpdy83s2bNZsmRJqeVLlizh3XfftUQJNd+jj8Jtt0FGBoweTbcQD+5o4kOhUeG9jaetXZ0QQghRbVgk3CxcuJCmTZuWWt68eXOTBvCr1TSaotYbZ2fYuRM+/JBp/ZuiUsFvR2MJj0mxdoVCCCFEtWCRcBMXF0dAQECp5T4+PsTGxlqiBNtQvz58+GHR96+8QtMr0dzfrmhG9Nm/n6pdozcLIYQQN2CRcBMcHMxff/1Vavlff/1FnTp1LFGC7Rg7Fu69t6hz8ciRTL69Hjqtmn2RyWw5mWDt6oQQQgirs0i4GTduHJMmTWLp0qVER0cTHR3NkiVLeP7553niiScsUYLtUKlg0SLw8oIjR6jz0bs8flsoAO9uOEWhwWjlAoUQQgjrssjdUoqiMG3aND755BPy8/MB0Ov1vPTSS8yYMcPchy+hxt4tdb01a+D++0GtJnPzVm7blUdqdgH/N7QlD3eqa+3qhBBCiCplyvu3RW8Fz8zM5OTJkzg4ONCoUSN0OssPPmcz4QZg9Gj4+muoX5+v5//EjK0x+Lnq2DblDhztLTLhuxBCCGER1e5W8GucnZ3p2LEjLVq0sEqwsTmffAJ168L58zzy3ScEeTgQny7TMgghhKjdLBJusrKyeO211+jWrRsNGzakfv36JR6iktzcYNkyADSLv+R9x4sALNhxnqTMPCsWJoQQQliPRa5djBs3jh07djBy5EgCAgJQqVSWOGzt0KsXPP88fPghnd9+ke4Tv+SvtKJpGV4f1Nza1QkhhBAWZ5E+N+7u7vz22290797d3Ie6KZvqc3NNbi60bw8nTpDU917at34SrUYt0zIIIYSwGdWuz42Hhweenp6WOFTtpNfD8uWg1eK18VdeTj4g0zIIIYSotSwSbt58801mzJhBdna2JQ5XO7VtC6+/DsDY1R8SmJ4g0zIIIYSolSxyWapt27ZERESgKAohISHY2dmVeP7QoUPmLqGYTV6WuqawEHr0gL17Ode8I73veY2O9b1Z/b8u0s9JCCFEjWbK+7dFOhQPHjzYEocRWm3RuDdt2tDw+H6eqPMrX6gGsfVUAnc187N2dUIIIYRFWHQQv+rAplturpk/H55+mkI7e/qN+ghVWBi/T+yBVmPRYY2EEEKIKlPtOhQLCxs/Hvr1Q1uQzyfr5xIVm8IPBy9auyohhBDCIiwSbgwGA++//z6dOnXC398fT0/PEg9RxVQqWLwYPD0Jiz3HhL++5cM/zpCdX2jtyoQQQgizs0i4mTVrFnPnzmXYsGGkpaUxefJkhg4dilqt5vWrd/iIKlanTtHlKeCZvd9T5+QRmZZBCCFErWCRcLNixQoWLVrElClT0Gq1DB8+nC+//JIZM2awd+9eS5RQOw0bBiNGoFGMfPDbXL7afEKmZRBCCGHzLBJu4uLiaNmyJVA0eWZaWhoA9957L7/99pslSqi9PvsMJTCQ+imXmbBxEZ9uPWftioQQQgizski4CQoKIjY2FoCGDRuyadMmAPbv3y+zg5ubhweqq5Nrjgr/jeiVa4hKzLJuTUIIIYQZWSTcDBkyhC1btgAwceJEXnvtNRo1asSoUaN4/PHHLVFC7Xb33TBhAgD/99tHfL5mn5ULEkIIIczHKuPc7N27l927d9OwYUMGDRpk0WPXinFuypKdTV6rNugizvJL0x4EbfyZtnU9rF2VEEIIUSGmvH/LIH61yf79GLp0RWM08PHY13lu0QyZlkEIIUSNUC3Czbp16+jfvz92dnasW7eu3HUt2XpTq8MNkDHtFVzefYc0nRNHf/+T23q1tXZJQgghxE1Vi3CjVquJi4vD19cXtfrGXXtUKhUGg8EcJZSptocbCgqIbd6OgLPHONi4A62P7UFrZ5EpxoQQQohKqxbTLxiNRnx9fYu/v9HDksFGAHZ2OH+3klytPe3PHODIy+9YuyIhhBCiSpn9bqmCggJ69erFmTNnzH0oUUEubVpy6JlpADT/+B1yjh63ckVCCCFE1TF7uLGzs+PYsWPScbWaaT/nVfY3bIe+II/0B4dDQYG1SxJCCCGqhEXGuRk1ahSLFy+2xKFEBens7Uj+bAFpOif8Th8l+/U3rF2SEEIIUSUs0pM0Pz+fL7/8ks2bN9OhQwecnJxKPD937lxLlCGu07t3Bz54aDJTv34T/f/NhiH3QYcO1i5LCCGEuCUWCTfHjh2jXbt2AKX63sjlKutRq1V0f3UCv+7bzr2n/iTjweFk7t5LQICXtUsTQgghKs0i4Wbbtm2WOIyohG6NfLj/kal0fPc4flHn+KfrXexetpL77wizdmlCCCFEpVikz42ovmLTcjiUpWbCoBfJstPTPfoIjYffR/y5aGuXJoQQQlSKxUZv279/P99//z0xMTHk5+eXeG7NmjWWKkNcJzIxC0WBfcEteHj4bJZ9P5OWcefIuvtO2PYHhIZau0QhhBDCJBZpufn222/p3r07J06cYO3atRQUFHDixAm2bt2Km5ubSfvauXMnAwcOpE6dOqhUKn766SfzFF1LhHo7ob7a7eloQCMeePQ9Lrr64hR9ntzOXeGff6xboBBCCGEii4Sbd955hw8//JBff/0Ve3t7Pv74Y06ePMmwYcOoW7euSfvKysqidevWfPbZZ2aqtnYJcHNg9tCWaK527I72CuTJpz7mlHc99Ffiye7andSNW6xcpRBCCFFxFpkV3MnJiePHjxMSEoK3tzfbtm2jZcuWnDx5kjvvvJPY2NhK7VelUrF27VoGDx5c4W1q/dxSNxCblkNUYjYh3o54Otmz6OeDdJ70OB0vHidXa88/7y+k43Oj5e42IYQQVlEt5pb6L09PTzIyMgAIDAzk2LFjAKSmppKdnW2JEsRNBLg50LWBFwFuDui0Gp69vxOO2/5gb/Nu6Avzaf/8WL55YiZXMvKsXaoQQghRLrOGm8OHDwPQo0cPNm/eDMCwYcOYOHEiTzzxBMOHD+euu+4yZwnk5eWRnp5e4iEqpnlDf9od2MaxvkPRKEZGLX6TlUOf5ufwi1igwU8IIYSoFLOGm3bt2tG+fXuaNWvG8OHDAZg+fTpTpkwhPj6eoUOHmn1ahtmzZ+Pm5lb8CA4ONuvxbI293p4Wv//AlWcmATDxjyUk/u9Z/rdsPwnpudYtTgghhCiDWfvc7NmzhyVLlvDdd99RUFDA0KFDGTt2LL169aqS/Vekz01eXh55ef9eSklPTyc4OFj63FSC4YO5aKa8AMDasDt4c+gLvDqkDUPaBkpfHCGEEGZVbfrcdO3alUWLFhEXF8f8+fO5ePEid999Nw0aNODtt9/m4sWL5jw8ADqdDldX1xIPUTmaFybDN9+gaLUMObGdD1fM5JXlfzP2qwPEpUkrjhBCiOrBIh2KHRwcGD16NNu3b+fMmTMMHz6chQsXEhoayoABA0zaV2ZmJocPHy7uzxMZGcnhw4eJiYkxQ+WilEcfRbVuHYqjIz0jD7Fq9SscCj9H7w938N2BC9IXRwghhNVZ5Fbw62VmZrJixQpefvllUlNTMRgMFd52+/btZV7WGj16NMuWLbvp9nIreBXZuxfuuQeSk7ngV4+Hhs7ksqsvPRv7MHtoS+q4O1i7QiGEEDbElPdvi4abHTt2sGTJEn788Uc0Gg3Dhg1j7NixdOnSxVIlSLipSidPQt++cOECmT7+PDjkdU56BOGs0/LKPc14uGOw9MURQghRJapNnxuACxcu8Oabb9KgQQN69epFREQEn376KZcvX2bRokUWDTaiijVrBn/9Bc2a4Xwljl+/m87DhRfJzCtk+pqjjFqyj4spMo6REEIIyzJry03v3r3Ztm0bPj4+jBo1iscff5wmTZqY63AVIi03ZpCUBPfeC3v3ojg4sPH1T5mYXoe8QiNO9hqmD2hGryY+RCdnE+rtRICbXLISQghhmmpzWWrQoEGMHTuWe++9F41GY67DmETCjZlkZcGDD8Lvv4NGQ8LH83lG05z9USklVlOrYPbQljzU0bQ5xYQQQtRu1SbcVEcSbsyooADGjoVvvgHA+N57fNpmEB/+cbbEahqVil3TekkLjhBCiAqrVn1uRC1iZwfLlsELRQP9qadO5YHvPoXr8rNBUTgXn2mFAoUQQtQGEm5E1VKr4f33Yc4cAAIXfcb76z9Caygssdr/bThFbFqONSoUQghh4yTcCPOYOhWWLgWNhgeObeGLtW+jL8hFrQK9Vs3xy+nc88kudp1NtHalQgghbIyEG2E+Y8bA2rWg13NnxH72b/0/9t4fxKbne9K8jivJWfmMXPI3n2w5i9FYq7p+CSGEMCMJN8K8Bg6EP/4Ad3dcDh/At1tH6r77Oj8+2pLhnYJRFJi7+QyPf7WflKx8a1crhBDCBki4EebXvTscPFg0Fk5BAbz3HvoWYczOPcZ797dEp1Wz/fQV7v10F/9cTLV2tUIIIWo4CTfCMurXh19+KXo0aACxsfDIIzz4wqOsv8ONel6OXErN4YH5e1i+N1om4BRCCFFpEm6EZd17Lxw7Bm+/DQ4O8OefNOjbg83nf2BwPQfyDUZe/ekYk787QnZ+4c33J4QQQlxHBvET1hMTA1OmwPffA6B4e7PzsecZq2lFoaKiiZ8L8x9tR30fZysXKoQQwtpkED9RM9StC999B1u2QFgYqsREer73CofXz6BnWiSn4zMY9NlfrD8aa+1KhRBC1CASboT13XknHD4Mc+eCiwvO/4Tz1YIJLN61EF1yIk+vOMSbv56gwGC0dqVCCCFqAAk3onqws4Pnn4czZ2D0aADu+usX/lr6FKMP/sKynecY/sVe4tJyrVyoEEKI6k7Cjahe/P2L5qf66y9o2xZ9Vgaz/ljI719NRL3rT+799E92R8ioxkIIIW5Mwo2onrp1g/37YcEC8PSkcUIU362cxmsr3+aFD3/j823nZFRjIYQQZZJwI6ovjQaefLLoUtX48SgqFfed3MEfX4wnY9bbjF+yh7TsAmtXKYQQopqRW8FFzXHoEDz7LOzZA0CEZyDzBj/LY288hZezPZGJWYR6OxHg5mDlQoUQQlQ1U96/JdyImsVohOXLKZgyFbsrCQBsbtSFN+4cxwV3f9QqmD20JQ91rGvlQoUQQlQlGedG2C61GkaNwu7sGfImTMKg1tD77F7++PIpXt66mLpJl5i+5iixaTnWrlQIIYSVSMuNqNEOrd9FztPP0D36n+Jle+q25MQ9w+jywhOE1fdFpVJZsUIhhBBVQS5LlUPCjW2JTcuh++wt3HFuP4+Gr6dn5CE0StFgfyl6F7Z37EvB44/Tc2gv/Fz1Vq5WCCFEZUm4KYeEG9uzen8ML685hkFRCMy4wtsp+2m16Uc8k+KL1zkY2JRDfR4g4IlR3NW+Pg72GitWLIQQwlQSbsoh4cY2xablEJWYTYi3Y9HdUgYDWb+sJ/njz6mz8w80RgMA6faOrG91J/EPPkLnB3rTKcQTtVouWwkhRHUn4aYcEm5qobg4UuZ9gWrxYtwvxxQv/se/IRu73ovDyEe5p0dTQr2drFikEEKI8ki4KYeEm1rMaETZto3kj+bhtuEXtIVFAwBm2+n4penthPe9n5b39+XeVoG4OdpZuVghhBD/JeGmHBJuBACJiRQs+4rc+QtxOX+2ePEp73p837YfafcPo1+P5vRs4oOdRk1sWo4MEiiEEFYk4aYcEm5ECYoCf/1FzrwF2K35EW1e0azjeRo71jfpzvrO95LdtRu7zyejKMgggUIIYSUSbsoh4UbcUGoqrFxJzrwFOBw/Wrw4wjOQ1a368HuT7sWjIP8+sQdN/OXfjxBCWIqEm3JIuBE3pShw8CDGhQspXLEK+5ys4qdi3PzYFdKGXSFtSe96G23aNKRHI2/a1vXAXisDfgshhLku40u4KYeEG2GKuEtX+OiJNxlybBvtLp3E7uot5QBGVBz3q89fIW040LAddj170KV5MLc18qa+t5OMjCyEqF0UhZ83HGDFim3oCvL4q367Kr2ML+GmHBJuhKmuDRKoy8um68XjvKi9QP1//sbu+LES6+Vp7NgfFMZfIW0406Izvrd34bam/nRv6IW7o72VqhdCiCpUWAgxMRjPniP92EmyTp7BeO4c9tFRuF+OQZdf1G/xgpsfPcYvRqNSsWtaryppwZFwUw4JN6IySg0SCBAXB1u2oGz+g8KNm7CLu1xim1S9M7vrtmJXaFuSutxO466t6NHYl7Z13bHTqEvsW+7EEkJYyk3/5mRnw/nzRQHm+ClyTp1BOXcOfUwUrgmX0RoMpbe5yqBSE+vizXnPQEYNewNUKlY90YWuDbxuuW4JN+WQcCPMQlHgzBn44w8MGzehbNuGNjOjxCoX3PzYVa81Bxq2w3BHL9q2b0xGbgFzN5/BKHdiCSEsYPX+GKavOYpLdgahabFMbWhHi5wr5J46A+fP4xAThWtyQrn7yNPYEePuzwWPAFL8g8mtF4KqYSMMoaG8eTybfPW/44RJy42FSLgRFlFYCAcOwB9/kL9hE9q/96K+OmjgNcd96/NnSBv+CmnD/qAwcu30qFWwfcod1PWS0ZKFqK1uuTXXaES5fJmsc5FknYkg/3wUxqgolOhociOiqJOWgGt+drm7SNc5EeURwAWPAFIDgsmvF4q6YUOcmjfBt0l9QnxcqOOuR6speSPFf+f606hUvDO0hfS5sQQJN8IqMjPhzz9RNm8md8MmHE4eL/F0gVpDhGcQp3xDOOMbSnbT5ujbt6Fey0a0DHKnsZ+L3I0lRC1wrWWlrNbcvEIDSZn5JF9JIzMikvyISIzR0WgvXEB3+QLO8ZfxSIzFK/UKdobCmx4r3tmT6KstMGmB9SioF4qmUUNcmjchIDSQUB9nAtxKB5ibKfMyfhWQcFMOCTeiWoiPJ+WX3/njkxV0jzpMnYzEMldL0bsUB570xs1Qt26NT5d2hDXwl8AjhI3ILzQSl5bLPxdTeW7lQTyy0/HPSCQw/QqB6Qk0yUvBMykOv5R46qRfwSc79ab7LFSpiXPxJs7dl2Rvf9J9Akj3DWR7rgOXXH257OpDjn1Ra/GOqXcQ7Fn9W4sl3JRDwo2oTlbvj+HlH4/il55AsyvRPOeTQ8P48xgP/4NTVARqY+mOe0ZURHrW4YxvKMkNmmBs2Qr3zu0I7dCCxv6upQKPdFgWoupV9P+VoiikZhdwKSWbhJg40iOiyY65iCHmAqrYWOwT4nBNuYJfRjK+mcn4ZiWXGHLiRnLsHUjy9ifDtw45/oEUBAdDcF3s6ofi0CgU1/r18HJzRG+nKbGdOS8bmZuEm3JIuBHVzQ2bcHNz4eRJlCNHyNh3iLzwwziePI5TWnKZ+8mwd+CMbwgJIY3JD2uBU4e2nPIOYe6+OOmwLEQVuv7S0bQeQXSwzyUjIobc6BgMFy+hjo1FdyUOl+Qr+GQk4ZeZjL4wv0L7N6IiycmtuIWlWZcWuDRugEPD+jg2DEUVEgIeHlDJsbTMddnI3CTclEPCjajx4uNRjhwhZe9Bsg4cwu74MbxiIrC7rsPyNRfc/DjnFVT8hzKsS0s8mjXEpXEDfJuE4uvhhFotAw4K23IrLZa5+YUkX04gI/oSWZfiyLsUR2FcHErCFYzx8WReiMUrOxXfzBR8M5Nwyc+p8L4znd3I9vIl39cfAgOxDw7CMTQYp5BgVIGBrEtQmLoznjy1psa1rJibhJtySLgRNqmgAOX0aRJ37yf170Oojh7F9exJfFPLv6WzUKUm3sWLRE8/0n3rkBcQhFK3LtrQEJwb18ezWQP8A31x0mlvuA+57CWqm+tbVt4Y1Jy7ghxJvxBL1oVL5F2OoyAuAWN8AuorCdgnJ6JPTcYpLRm3jBTcs9OxN968Q+5/ZekcSfPwIdvLlwL/AFSBddAFB+EUWhe3hvXQ1Q2GgADQ62+6r5rasmJuEm7KIeFG1BaxaTn0f30dTeIjqZcSS2B6AoHpV2hhSMP9ymW8UhIqdEdFms6JOA8/Urz8yfYPpDAoGHVIPfQNQvhH7c4HR9MwoJbLXsIklQnFBYUG0pLSyIi9Qnb8FXLjr5B/JYnCxGSMycmQkowxOYX0y1dwz83AIycdz+w0vLPTKnxJ6L8ydY6kuXiQ7eZJrocX+Z7e5Hl4sjlRIcnRjQRnT+KdvUhy9mDjzHsliJhZrQg38+bN47333iM2NpbmzZvz0Ucf0aNHj5tuJ+FG1Cbldh40Gim8dJmUUxGkn44gN+I8hugY7C5ewCnuEh5JcbhkZ5R/ACBfrSXZ0ZUUB1dSHVwwenhS6OGJ0cMTxcsLjY8Xdj4+6P19cPT3xSXQD/cgfxwd7Cs0/5a0DFmHuc57QX4Bq7edYN66wzjmZeOel8ngunoa2hViSEqG5GRUqalo0lKwS09Dn5GGY1YGztkZuOZkmNyi8l+5djrSnD3IdPMk18OTfE8fFB9vVL6+aP390NfxxymoDi716uAc6I/KoezXXZM75dZkNh9uVq9ezciRI5k3bx7du3dn4cKFfPnll5w4cYK6dcv/BybhRtQ2t9TEnZFB5tkIUk5GkHXuPAXno1BfuIAu9iIu8ZfxSr2CVjFWqq40vTMZjq5kubiR6+JOvrsHhmuByMsLO19vThbYs+pcJpl2DuTZ6XhuYGsevL0JGgd9pTtT/pe5g1NN3f9/L+vYKQbeujuEu4McyU1OJTc5jfzUdPJT0yhMS8OQnomSno6SkYEqMwN1VhbqzEy02ZnYZ2dhn5uDLjcLh9xsHPNycCjMu+X6CtQaMh1cyHJyJcfZlXwXNwrd3DC6e5Dn7MbmuHzS9M6kOLiQ6OhOipMbq18dRECgTxWcnSJy6cjybD7cdO7cmXbt2jF//vziZc2aNWPw4MHMnj273G0l3AhRNWLTcrj9nc34ZCThmZ1edAkgN4ORjZyxS0uBxCRUycnYpSajS0/FISMN56w0XHKzbvnYRlTk2unIsdeTf+2h01Og01Ooc6DQwQGD3gGjgyOKgwOKgwM4OoKTEyonJ9ROTpzNMLApKp0crQ6jWs2gdsF0auiDWqNFbadBpdGisdOi0mpQa7VFD3stGq0WlZ0GjUaLxs4OtZ0GjV3R81q7q9uo1WUPxtYhGKPBiKGwEGNhIcYCQ9H3BgNKQWHxcsVgLH6OQgNGQyGGQkPx98bCQvacucKP+6OxMxSiN+TTv4E7TT3sMebkYszJgZwclNxclNxcyMlFlZeHKq/oqzovF3VeHpr8fx/agnzsrn7V5OehK8xHf/VhDgVqDZn2jqQ6OJOmd0Zx8wAPdwrdPcDDA5WnBxpPT+x8vNH7euPg641zHR+c/X3RuDiXG26lZcU22XS4yc/Px9HRke+//54hQ4YUL584cSKHDx9mx44dJdbPy8sjL+/fTwrp6ekEBwdLuBGiClTmTUTJzycnIZG0C3FkxcaTE5dAfvwVCq8koiQmoU5JRpuSjDYlBfv0VNxzM3AsyENfkHdLlyQsyYgKg1qNQV00xojaaESjFD1qqny1lmydA9k6R3L1juTrHcl3cKLA0QmDkzNGJyeMzs6oXFxQubqidnFB6+aK1t0Vew839O5u6DzdyLJz5N5lh8lVa4sDSlXOP3SNtKzYHlPCzY1vgaimEhMTMRgM+Pn5lVju5+dHXFxcqfVnz57NrFmzLFWeELXKQx3rcntjH5PeRFT29jgG1cExqE6568Wm5dD9/7Zi/M/HL3tjIb+Oa4+bkk9eWib5GZkUZGRiyMy++jULY2YWSlYWSnY2SlY2qpxsVNnZqHNzUOfkoMnJhuxsCjOzcCjIQ1+Yj1oxoDEasUNBoxhRG42oFSMaowG1seg59dXlFQkpahTURkOFBmO73rVgZFSpi78aVWqM6qsPlQaDSk2BSoWiUpOvsSNPa0eexh61ox6V3gGDvT0GnQ6jvR6jToei06Poi76i16PS61E56EHvgNpBj9rRAY2DA2pHB7JUGt7eGkWexo48rT2Z9g7k6BzYOr0PgR6OuJv8ikqbNUxdKhRXdQAJcHOQUFOL1bhwc831HREVRSmzc+L06dOZPHly8c/XWm6EEFXDXG8iAW4OzB7assSb4JsPtqVx46Bb3ndZwela64FvRV6LomAsLLpsZMgvwHD1ktK1S0vxyVmMXfI3KqMRFQoGlRpFrWbpuK74uTsWX+7SXLvcZVf0vUarQa1Wc7NJNWLTcrj9BvVXxe9idJPSLXKBHo63vN9rKhOKhTBFjQs33t7eaDSaUq00CQkJpVpzAHQ6HTqdzlLlCSGqkLneBMsKTia1HqhUqO20qO202DmUHrfEMxQmGh1L7b9Zm6rp93HL9d+EJcKHtKwIc6pxfW6gqENx+/btmTdvXvGysLAw7rvvPulQLISoMHP3y6jp+xeiOrHpPjcAkydPZuTIkXTo0IGuXbvyxRdfEBMTw/jx461dmhCiBjF360FN378QNVWNDDcPPfQQSUlJvPHGG8TGxtKiRQvWr19PvXr1rF2aEEIIIaysRl6WuhVyWUoIIYSoeWz+stStuJbl0tPTrVyJEEIIISrq2vt2Rdpkal24ycgomitHbgcXQgghap6MjAzc3NzKXafWXZYyGo1cvnwZFxeXCk3aJ6rGtfGFLly4IJcDLUzOvfXIubceOffWY65zrygKGRkZ1KlTB7W6/NGgal3LjVqtJijo1gcBE5Xj6uoqf2isRM699ci5tx4599ZjjnN/sxaba242EKYQQgghRI0i4UYIIYQQNkXCjbAInU7HzJkzZSoMK5Bzbz1y7q1Hzr31VIdzX+s6FAshhBDCtknLjRBCCCFsioQbIYQQQtgUCTdCCCGEsCkSboQQQghhUyTciCozb948QkND0ev1tG/fnj///LPc9fPy8njllVeoV68eOp2OBg0asGTJEgtVa1tMPfcrVqygdevWODo6EhAQwGOPPUZSUpKFqrUdO3fuZODAgdSpUweVSsVPP/1002127NhB+/bt0ev11K9fnwULFpi/UBtj6nlfs2YNvXv3xsfHB1dXV7p27crGjRstU6yNqcy/+Wv++usvtFotbdq0MVt910i4EVVi9erVTJo0iVdeeYXw8HB69OhB//79iYmJueE2w4YNY8uWLSxevJjTp0+zatUqmjZtasGqbYOp537Xrl2MGjWKsWPHcvz4cb7//nv279/PuHHjLFx5zZeVlUXr1q357LPPKrR+ZGQkAwYMoEePHoSHh/Pyyy/z3HPP8eOPP5q5Utti6nnfuXMnvXv3Zv369Rw8eJBevXoxcOBAwsPDzVyp7TH13F+TlpbGqFGjuOuuu8xU2XUUIapAp06dlPHjx5dY1rRpU2XatGllrv/7778rbm5uSlJSkiXKs2mmnvv33ntPqV+/folln3zyiRIUFGS2GmsDQFm7dm2567z44otK06ZNSyx78sknlS5dupixMttWkfNelrCwMGXWrFlVX1AtYsq5f+ihh5RXX31VmTlzptK6dWuz1qUoiiItN+KW5efnc/DgQfr06VNieZ8+fdi9e3eZ26xbt44OHTowZ84cAgMDady4MVOmTCEnJ8cSJduMypz7bt26cfHiRdavX4+iKMTHx/PDDz9wzz33WKLkWm3Pnj2lfld9+/blwIEDFBQUWKmq2sdoNJKRkYGnp6e1S6kVli5dSkREBDNnzrTYMWvdxJmi6iUmJmIwGPDz8yux3M/Pj7i4uDK3OX/+PLt27UKv17N27VoSExN5+umnSU5Oln43JqjMue/WrRsrVqzgoYceIjc3l8LCQgYNGsSnn35qiZJrtbi4uDJ/V4WFhSQmJhIQEGClymqXDz74gKysLIYNG2btUmze2bNnmTZtGn/++SdareUih7TciCqjUqlK/KwoSqll1xiNRlQqFStWrKBTp04MGDCAuXPnsmzZMmm9qQRTzv2JEyd47rnnmDFjBgcPHmTDhg1ERkYyfvx4S5Ra65X1uypruTCPVatW8frrr7N69Wp8fX2tXY5NMxgMjBgxglmzZtG4cWOLHltabsQt8/b2RqPRlGopSEhIKPUp9ZqAgAACAwNLTF/frFkzFEXh4sWLNGrUyKw124rKnPvZs2fTvXt3pk6dCkCrVq1wcnKiR48evPXWW9J6YEb+/v5l/q60Wi1eXl5Wqqr2WL16NWPHjuX777/n7rvvtnY5Ni8jI4MDBw4QHh7Os88+CxR9sFUUBa1Wy6ZNm7jzzjvNcmxpuRG3zN7envbt27N58+YSyzdv3ky3bt3K3KZ79+5cvnyZzMzM4mVnzpxBrVYTFBRk1nptSWXOfXZ2Nmp1yf/6Go0G+LcVQZhH165dS/2uNm3aRIcOHbCzs7NSVbXDqlWrGDNmDCtXrpT+ZRbi6urK0aNHOXz4cPFj/PjxNGnShMOHD9O5c2fzHdzsXZZFrfDtt98qdnZ2yuLFi5UTJ04okyZNUpycnJSoqChFURRl2rRpysiRI4vXz8jIUIKCgpQHHnhAOX78uLJjxw6lUaNGyrhx46z1EmosU8/90qVLFa1Wq8ybN0+JiIhQdu3apXTo0EHp1KmTtV5CjZWRkaGEh4cr4eHhCqDMnTtXCQ8PV6KjoxVFKX3uz58/rzg6OirPP/+8cuLECWXx4sWKnZ2d8sMPP1jrJdRIpp73lStXKlqtVvn888+V2NjY4kdqaqq1XkKNZeq5v56l7paScCOqzOeff67Uq1dPsbe3V9q1a6fs2LGj+LnRo0crPXv2LLH+yZMnlbvvvltxcHBQgoKClMmTJyvZ2dkWrto2mHruP/nkEyUsLExxcHBQAgIClEceeUS5ePGihauu+bZt26YApR6jR49WFKXsc799+3albdu2ir29vRISEqLMnz/f8oXXcKae9549e5a7vqi4yvyb/y9LhRuVokg7tBBCCCFsh/S5EUIIIYRNkXAjhBBCCJsi4UYIIYQQNkXCjRBCCCFsioQbIYQQQtgUCTdCCCGEsCkSboQQQghhUyTcCCGEEMKmSLgRQgghhE2RcCOEEEIImyLhRgghhBA2RcKNEMImrF+/nj59+uDm5oaXlxcDBw4kMjISgNmzZ6NSqQgPD7dylUIIS5CJM4UQNZqiKDz99NMsWLCAgIAAevTowfHjxzl+/DidO3dm27ZthISE0KVLF37++WdrlyuEsACttQsQQohb8cYbb7BgwQJ69erFL7/8gpOTE4WFhXTs2JG///6bd999l4SEBGbMmGHtUoUQFiItN0KIGisuLo6QkBBUKhUnT54kJCSk+Llp06bx7rvvotfrufvuu/nll1+sV6gQwqKkz40QosZavnw5eXl5PPbYYyWCDYC7uzsAubm50mojRC0j4UYIUWNt3rwZgMGDB99wnf79+9OxY0cLVSSEqA4k3AghaqxDhw4B0K1bt1LPpaenA/Diiy9atCYhhPVJnxshRI2Ul5eHXq/HxcWlOMhck5ycTMOGDUlJSeHs2bM0bNjQSlUKIaxBWm6EEDVadnY2+fn5JZa9+uqrpKSkAKDRaKxRlhDCiiTcCCFqJJ1OR/369TEYDCxevLh4+XfffceCBQuwt7cHKB7ITwhRe0i4EULUWM8++2zx1/79+9O7d28eeughmjRpwnvvvQfA6NGjmTJlijXLFEJYmAziJ4SosSZNmoSiKCxcuJCtW7fi4ODA/fffz8KFC3F2dubAgQN8//33HDlyxNqlCiEsSDoUCyGEEMKmyGUpIYQQQtgUCTdCCCGEsCkSboQQQghhUyTcCCGEEMKmSLgRQgghhE2RcCOEEEIImyLhRgghhBA2RcKNEEIIIWyKhBshhBBC2BQJN0IIIYSwKRJuhBBCCGFTJNwIIYQQwqZIuBFCCCGETfl/CBEcS+PognMAAAAASUVORK5CYII=",
+ "text/plain": [
+ "