-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOn the Origin of Species.txt
16576 lines (15069 loc) · 948 KB
/
On the Origin of Species.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
The Project Gutenberg eBook of On the Origin of Species By Means of Natural Selection
This ebook is for the use of anyone anywhere in the United States and
most other parts of the world at no cost and with almost no restrictions
whatsoever. You may copy it, give it away or re-use it under the terms
of the Project Gutenberg License included with this ebook or online
at www.gutenberg.org. If you are not located in the United States,
you will have to check the laws of the country where you are located
before using this eBook.
Title: On the Origin of Species By Means of Natural Selection
Author: Charles Darwin
Release date: March 1, 1998 [eBook #1228]
Most recently updated: October 28, 2023
Language: English
Credits: Sue Asscher and David Widger
*** START OF THE PROJECT GUTENBERG EBOOK ON THE ORIGIN OF SPECIES BY MEANS OF NATURAL SELECTION ***
There are several editions of this ebook in the Project Gutenberg collection.
Various characteristics of each ebook are listed to aid in selecting the
preferred file.
Click on any of the filenumbers below to quickly view each ebook.
1228 1859, First Edition
22764 1860, Second Edition
2009 1872, Sixth Edition, considered the definitive edition.
On
the Origin of Species
BY MEANS OF NATURAL SELECTION,
OR THE
PRESERVATION OF FAVOURED RACES IN THE STRUGGLE FOR LIFE.
By Charles Darwin, M.A.,
Fellow Of The Royal, Geological, Linnæan, Etc., Societies;
Author Of ‘Journal Of Researches During H.M.S. Beagle’s Voyage
Round The World.’
LONDON:
JOHN MURRAY, ALBEMARLE STREET.
1859.
“But with regard to the material world, we can at least go so far as
this—we can perceive that events are brought about not by insulated
interpositions of Divine power, exerted in each particular case, but by the
establishment of general laws.”
W. WHEWELL: _Bridgewater Treatise_.
“To conclude, therefore, let no man out of a weak conceit of sobriety, or
an ill-applied moderation, think or maintain, that a man can search too far or
be too well studied in the book of God’s word, or in the book of
God’s works; divinity or philosophy; but rather let men endeavour an
endless progress or proficience in both.”
BACON: _Advancement of Learning_.
_Down, Bromley, Kent,
October_, 1_st_, 1859.
Contents
INTRODUCTION.
1. VARIATION UNDER DOMESTICATION.
2. VARIATION UNDER NATURE.
3. STRUGGLE FOR EXISTENCE.
4. NATURAL SELECTION.
5. LAWS OF VARIATION.
6. DIFFICULTIES ON THEORY.
7. INSTINCT.
8. HYBRIDISM.
9. ON THE IMPERFECTION OF THE GEOLOGICAL RECORD.
10. ON THE GEOLOGICAL SUCCESSION OF ORGANIC BEINGS.
11. GEOGRAPHICAL DISTRIBUTION.
12. GEOGRAPHICAL DISTRIBUTION—_continued_.
13. MUTUAL AFFINITIES OF ORGANIC BEINGS: MORPHOLOGY:
14. RECAPITULATION AND CONCLUSION.
INDEX
DETEAILED CONTENTS. ON THE ORIGIN OF SPECIES.
INTRODUCTION.
CHAPTER I. VARIATION UNDER DOMESTICATION.
Causes of Variability.
Effects of Habit.
Correlation of Growth.
Inheritance.
Character of Domestic Varieties.
Difficulty of distinguishing between Varieties and Species.
Origin of Domestic Varieties from one or more Species.
Domestic Pigeons, their Differences and Origin.
Principle of Selection anciently followed, its Effects.
Methodical and Unconscious Selection.
Unknown Origin of our Domestic Productions.
Circumstances favourable to Man’s power of Selection.
CHAPTER 2. VARIATION UNDER NATURE.
Variability.
Individual Differences.
Doubtful species.
Wide ranging, much diffused, and common species vary most.
Species of the larger genera in any country vary more than the
species of the smaller genera.
Many of the species of the larger genera resemble varieties in being
very closely, but unequally, related to each other, and in having
restricted ranges.
CHAPTER 3. STRUGGLE FOR EXISTENCE.
Bears on natural selection.
The term used in a wide sense.
Geometrical powers of increase.
Rapid increase of naturalised animals and plants.
Nature of the checks to increase.
Competition universal.
Effects of climate.
Protection from the number of individuals.
Complex relations of all animals and plants throughout nature.
Struggle for life most severe between individuals and varieties of
the same species; often severe between species of the same genus.
The relation of organism to organism the most important of all
relations.
CHAPTER 4. NATURAL SELECTION.
Natural Selection: its power compared with man’s selection, its power
on characters of trifling importance, its power at all ages and on
both sexes.
Sexual Selection.
On the generality of intercrosses between individuals of the same
species.
Circumstances favourable and unfavourable to Natural Selection,
namely, intercrossing, isolation, number of individuals.
Slow action.
Extinction caused by Natural Selection.
Divergence of Character, related to the diversity of inhabitants of
any small area, and to naturalisation.
Action of Natural Selection, through Divergence of Character and
Extinction, on the descendants from a common parent.
Explains the Grouping of all organic beings.
CHAPTER 5. LAWS OF VARIATION.
Effects of external conditions.
Use and disuse, combined with natural selection; organs of flight and
of vision.
Acclimatisation.
Correlation of growth.
Compensation and economy of growth.
False correlations.
Multiple, rudimentary, and lowly organised structures variable.
Parts developed in an unusual manner are highly variable: specific
characters more variable than generic: secondary sexual characters
variable.
Species of the same genus vary in an analogous manner.
Reversions to long-lost characters.
Summary.
CHAPTER 6. DIFFICULTIES ON THEORY.
Difficulties on the theory of descent with modification.
Transitions.
Absence or rarity of transitional varieties.
Transitions in habits of life.
Diversified habits in the same species.
Species with habits widely different from those of their allies.
Organs of extreme perfection.
Means of transition.
Cases of difficulty.
Natura non facit saltum.
Organs of small importance.
Organs not in all cases absolutely perfect.
The law of Unity of Type and of the Conditions of Existence embraced
by the theory of Natural Selection.
CHAPTER 7. INSTINCT.
Instincts comparable with habits, but different in their origin.
Instincts graduated.
Aphides and ants.
Instincts variable.
Domestic instincts, their origin.
Natural instincts of the cuckoo, ostrich, and parasitic bees.
Slave-making ants.
Hive-bee, its cell-making instinct.
Difficulties on the theory of the Natural Selection of instincts.
Neuter or sterile insects.
Summary.
CHAPTER 8. HYBRIDISM.
Distinction between the sterility of first crosses and of hybrids.
Sterility various in degree, not universal, affected by close
interbreeding, removed by domestication.
Laws governing the sterility of hybrids.
Sterility not a special endowment, but incidental on other
differences.
Causes of the sterility of first crosses and of hybrids.
Parallelism between the effects of changed conditions of life and
crossing.
Fertility of varieties when crossed and of their mongrel offspring
not universal.
Hybrids and mongrels compared independently of their fertility.
Summary.
CHAPTER 9. ON THE IMPERFECTION OF THE GEOLOGICAL RECORD.
On the absence of intermediate varieties at the present day.
On the nature of extinct intermediate varieties; on their number.
On the vast lapse of time, as inferred from the rate of deposition
and of denudation.
On the poorness of our palæontological collections.
On the intermittence of geological formations.
On the absence of intermediate varieties in any one formation.
On the sudden appearance of groups of species.
On their sudden appearance in the lowest known fossiliferous strata.
CHAPTER 10. ON THE GEOLOGICAL SUCCESSION OF ORGANIC BEINGS.
On the slow and successive appearance of new species.
On their different rates of change.
Species once lost do not reappear.
Groups of species follow the same general rules in their appearance
and disappearance as do single species.
On Extinction.
On simultaneous changes in the forms of life throughout the world.
On the affinities of extinct species to each other and to living
species.
On the state of development of ancient forms.
On the succession of the same types within the same areas.
Summary of preceding and present chapters.
CHAPTER 11. GEOGRAPHICAL DISTRIBUTION.
Present distribution cannot be accounted for by differences in
physical conditions.
Importance of barriers.
Affinity of the productions of the same continent.
Centres of creation.
Means of dispersal, by changes of climate and of the level of the
land, and by occasional means.
Dispersal during the Glacial period co-extensive with the world.
CHAPTER 12. GEOGRAPHICAL DISTRIBUTION—_continued_.
Distribution of fresh-water productions.
On the inhabitants of oceanic islands.
Absence of Batrachians and of terrestrial Mammals.
On the relation of the inhabitants of islands to those of the nearest
mainland.
On colonisation from the nearest source with subsequent modification.
Summary of the last and present chapters.
CHAPTER 13. MUTUAL AFFINITIES OF ORGANIC BEINGS: MORPHOLOGY:
EMBRYOLOGY: RUDIMENTARY ORGANS.
CLASSIFICATION, groups subordinate to groups.
Natural system.
Rules and difficulties in classification, explained on the theory of
descent with modification.
Classification of varieties.
Descent always used in classification.
Analogical or adaptive characters.
Affinities, general, complex and radiating.
Extinction separates and defines groups.
MORPHOLOGY, between members of the same class, between parts of the
same individual.
EMBRYOLOGY, laws of, explained by variations not supervening at an
early age, and being inherited at a corresponding age.
RUDIMENTARY ORGANS; their origin explained.
Summary.
CHAPTER 14. RECAPITULATION AND CONCLUSION.
Recapitulation of the difficulties on the theory of Natural
Selection.
Recapitulation of the general and special circumstances in its
favour.
Causes of the general belief in the immutability of species.
How far the theory of natural selection may be extended.
Effects of its adoption on the study of Natural history.
Concluding remarks.
ON THE ORIGIN OF SPECIES.
INTRODUCTION.
When on board H.M.S. ‘Beagle,’ as naturalist, I was much struck with
certain facts in the distribution of the inhabitants of South America,
and in the geological relations of the present to the past inhabitants
of that continent. These facts seemed to me to throw some light on the
origin of species—that mystery of mysteries, as it has been called by
one of our greatest philosophers. On my return home, it occurred to me,
in 1837, that something might perhaps be made out on this question by
patiently accumulating and reflecting on all sorts of facts which could
possibly have any bearing on it. After five years’ work I allowed
myself to speculate on the subject, and drew up some short notes; these
I enlarged in 1844 into a sketch of the conclusions, which then seemed
to me probable: from that period to the present day I have steadily
pursued the same object. I hope that I may be excused for entering on
these personal details, as I give them to show that I have not been
hasty in coming to a decision.
My work is now nearly finished; but as it will take me two or three
more years to complete it, and as my health is far from strong, I have
been urged to publish this Abstract. I have more especially been
induced to do this, as Mr. Wallace, who is now studying the
natural history of the Malay archipelago, has arrived at almost exactly
the same general conclusions that I have on the origin of species. Last
year he sent to me a memoir on this subject, with a request that I
would forward it to Sir Charles Lyell, who sent it to the Linnean
Society, and it is published in the third volume of the Journal of that
Society. Sir C. Lyell and Dr. Hooker, who both knew of my work—the
latter having read my sketch of 1844—honoured me by thinking it
advisable to publish, with Mr. Wallace’s excellent memoir, some brief
extracts from my manuscripts.
This Abstract, which I now publish, must necessarily be imperfect. I
cannot here give references and authorities for my several statements;
and I must trust to the reader reposing some confidence in my accuracy.
No doubt errors will have crept in, though I hope I have always been
cautious in trusting to good authorities alone. I can here give only
the general conclusions at which I have arrived, with a few facts in
illustration, but which, I hope, in most cases will suffice. No one can
feel more sensible than I do of the necessity of hereafter publishing
in detail all the facts, with references, on which my conclusions have
been grounded; and I hope in a future work to do this. For I am well
aware that scarcely a single point is discussed in this volume on which
facts cannot be adduced, often apparently leading to conclusions
directly opposite to those at which I have arrived. A fair result can
be obtained only by fully stating and balancing the facts and arguments
on both sides of each question; and this cannot possibly be here done.
I much regret that want of space prevents my having the satisfaction of
acknowledging the generous assistance which I have received from very
many naturalists, some of them personally unknown to me. I cannot,
however,
let this opportunity pass without expressing my deep obligations to Dr.
Hooker, who for the last fifteen years has aided me in every possible
way by his large stores of knowledge and his excellent judgment.
In considering the Origin of Species, it is quite conceivable that a
naturalist, reflecting on the mutual affinities of organic beings, on
their embryological relations, their geographical distribution,
geological succession, and other such facts, might come to the
conclusion that each species had not been independently created, but
had descended, like varieties, from other species. Nevertheless, such a
conclusion, even if well founded, would be unsatisfactory, until it
could be shown how the innumerable species inhabiting this world have
been modified, so as to acquire that perfection of structure and
coadaptation which most justly excites our admiration. Naturalists
continually refer to external conditions, such as climate, food, etc.,
as the only possible cause of variation. In one very limited sense, as
we shall hereafter see, this may be true; but it is preposterous to
attribute to mere external conditions, the structure, for instance, of
the woodpecker, with its feet, tail, beak, and tongue, so admirably
adapted to catch insects under the bark of trees. In the case of the
misseltoe, which draws its nourishment from certain trees, which has
seeds that must be transported by certain birds, and which has flowers
with separate sexes absolutely requiring the agency of certain insects
to bring pollen from one flower to the other, it is equally
preposterous to account for the structure of this parasite, with its
relations to several distinct organic beings, by the effects of
external conditions, or of habit, or of the volition of the plant
itself.
The author of the ‘Vestiges of Creation’ would, I presume, say that,
after a certain unknown number of
generations, some bird had given birth to a woodpecker, and some plant
to the misseltoe, and that these had been produced perfect as we now
see them; but this assumption seems to me to be no explanation, for it
leaves the case of the coadaptations of organic beings to each other
and to their physical conditions of life, untouched and unexplained.
It is, therefore, of the highest importance to gain a clear insight
into the means of modification and coadaptation. At the commencement of
my observations it seemed to me probable that a careful study of
domesticated animals and of cultivated plants would offer the best
chance of making out this obscure problem. Nor have I been
disappointed; in this and in all other perplexing cases I have
invariably found that our knowledge, imperfect though it be, of
variation under domestication, afforded the best and safest clue. I may
venture to express my conviction of the high value of such studies,
although they have been very commonly neglected by naturalists.
From these considerations, I shall devote the first chapter of this
Abstract to Variation under Domestication. We shall thus see that a
large amount of hereditary modification is at least possible, and, what
is equally or more important, we shall see how great is the power of
man in accumulating by his Selection successive slight variations. I
will then pass on to the variability of species in a state of nature;
but I shall, unfortunately, be compelled to treat this subject far too
briefly, as it can be treated properly only by giving long catalogues
of facts. We shall, however, be enabled to discuss what circumstances
are most favourable to variation. In the next chapter the Struggle for
Existence amongst all organic beings throughout the world, which
inevitably follows from their high geometrical powers of
increase, will be treated of. This is the doctrine of Malthus, applied
to the whole animal and vegetable kingdoms. As many more individuals of
each species are born than can possibly survive; and as, consequently,
there is a frequently recurring struggle for existence, it follows that
any being, if it vary however slightly in any manner profitable to
itself, under the complex and sometimes varying conditions of life,
will have a better chance of surviving, and thus be _naturally
selected_. From the strong principle of inheritance, any selected
variety will tend to propagate its new and modified form.
This fundamental subject of Natural Selection will be treated at some
length in the fourth chapter; and we shall then see how Natural
Selection almost inevitably causes much Extinction of the less improved
forms of life and induces what I have called Divergence of Character.
In the next chapter I shall discuss the complex and little known laws
of variation and of correlation of growth. In the four succeeding
chapters, the most apparent and gravest difficulties on the theory will
be given: namely, first, the difficulties of transitions, or in
understanding how a simple being or a simple organ can be changed and
perfected into a highly developed being or elaborately constructed
organ; secondly the subject of Instinct, or the mental powers of
animals, thirdly, Hybridism, or the infertility of species and the
fertility of varieties when intercrossed; and fourthly, the
imperfection of the Geological Record. In the next chapter I shall
consider the geological succession of organic beings throughout time;
in the eleventh and twelfth, their geographical distribution throughout
space; in the thirteenth, their classification or mutual affinities,
both when mature and in an embryonic condition. In the last chapter I
shall give a
brief recapitulation of the whole work, and a few concluding remarks.
No one ought to feel surprise at much remaining as yet unexplained in
regard to the origin of species and varieties, if he makes due
allowance for our profound ignorance in regard to the mutual relations
of all the beings which live around us. Who can explain why one species
ranges widely and is very numerous, and why another allied species has
a narrow range and is rare? Yet these relations are of the highest
importance, for they determine the present welfare, and, as I believe,
the future success and modification of every inhabitant of this world.
Still less do we know of the mutual relations of the innumerable
inhabitants of the world during the many past geological epochs in its
history. Although much remains obscure, and will long remain obscure, I
can entertain no doubt, after the most deliberate study and
dispassionate judgment of which I am capable, that the view which most
naturalists entertain, and which I formerly entertained—namely, that
each species has been independently created—is erroneous. I am fully
convinced that species are not immutable; but that those belonging to
what are called the same genera are lineal descendants of some other
and generally extinct species, in the same manner as the acknowledged
varieties of any one species are the descendants of that species.
Furthermore, I am convinced that Natural Selection has been the main
but not exclusive means of modification.
CHAPTER I.
VARIATION UNDER DOMESTICATION.
Causes of Variability. Effects of Habit. Correlation of Growth.
Inheritance. Character of Domestic Varieties. Difficulty of
distinguishing between Varieties and Species. Origin of Domestic
Varieties from one or more Species. Domestic Pigeons, their Differences
and Origin. Principle of Selection anciently followed, its Effects.
Methodical and Unconscious Selection. Unknown Origin of our Domestic
Productions. Circumstances favourable to Man’s power of Selection.
When we look to the individuals of the same variety or sub-variety of
our older cultivated plants and animals, one of the first points which
strikes us, is, that they generally differ much more from each other,
than do the individuals of any one species or variety in a state of
nature. When we reflect on the vast diversity of the plants and animals
which have been cultivated, and which have varied during all ages under
the most different climates and treatment, I think we are driven to
conclude that this greater variability is simply due to our domestic
productions having been raised under conditions of life not so uniform
as, and somewhat different from, those to which the parent-species have
been exposed under nature. There is, also, I think, some probability in
the view propounded by Andrew Knight, that this variability may be
partly connected with excess of food. It seems pretty clear that
organic beings must be exposed during several generations to the new
conditions of life to cause any appreciable amount of variation; and
that when the organisation has once begun to vary, it generally
continues to vary for many generations.
No case is on record of a variable being ceasing to be variable under
cultivation. Our oldest cultivated plants, such as wheat, still often
yield new varieties: our oldest domesticated animals are still capable
of rapid improvement or modification.
It has been disputed at what period of life the causes of variability,
whatever they may be, generally act; whether during the early or late
period of development of the embryo, or at the instant of conception.
Geoffroy St. Hilaire’s experiments show that unnatural treatment of the
embryo causes monstrosities; and monstrosities cannot be separated by
any clear line of distinction from mere variations. But I am strongly
inclined to suspect that the most frequent cause of variability may be
attributed to the male and female reproductive elements having been
affected prior to the act of conception. Several reasons make me
believe in this; but the chief one is the remarkable effect which
confinement or cultivation has on the functions of the reproductive
system; this system appearing to be far more susceptible than any other
part of the organisation, to the action of any change in the conditions
of life. Nothing is more easy than to tame an animal, and few things
more difficult than to get it to breed freely under confinement, even
in the many cases when the male and female unite. How many animals
there are which will not breed, though living long under not very close
confinement in their native country! This is generally attributed to
vitiated instincts; but how many cultivated plants display the utmost
vigour, and yet rarely or never seed! In some few such cases it has
been found out that very trifling changes, such as a little more or
less water at some particular period of growth, will determine whether
or not the plant sets a seed. I cannot here enter on the copious
details which I have collected on
this curious subject; but to show how singular the laws are which
determine the reproduction of animals under confinement, I may just
mention that carnivorous animals, even from the tropics, breed in this
country pretty freely under confinement, with the exception of the
plantigrades or bear family; whereas, carnivorous birds, with the
rarest exceptions, hardly ever lay fertile eggs. Many exotic plants
have pollen utterly worthless, in the same exact condition as in the
most sterile hybrids. When, on the one hand, we see domesticated
animals and plants, though often weak and sickly, yet breeding quite
freely under confinement; and when, on the other hand, we see
individuals, though taken young from a state of nature, perfectly
tamed, long-lived, and healthy (of which I could give numerous
instances), yet having their reproductive system so seriously affected
by unperceived causes as to fail in acting, we need not be surprised at
this system, when it does act under confinement, acting not quite
regularly, and producing offspring not perfectly like their parents or
variable.
Sterility has been said to be the bane of horticulture; but on this
view we owe variability to the same cause which produces sterility; and
variability is the source of all the choicest productions of the
garden. I may add, that as some organisms will breed most freely under
the most unnatural conditions (for instance, the rabbit and ferret kept
in hutches), showing that their reproductive system has not been thus
affected; so will some animals and plants withstand domestication or
cultivation, and vary very slightly—perhaps hardly more than in a state
of nature.
A long list could easily be given of “sporting plants;” by this term
gardeners mean a single bud or offset, which suddenly assumes a new and
sometimes very different character from that of the rest of the plant.
Such buds can be propagated by grafting, etc., and sometimes by seed.
These “sports” are extremely rare under nature, but far from rare under
cultivation; and in this case we see that the treatment of the parent
has affected a bud or offset, and not the ovules or pollen. But it is
the opinion of most physiologists that there is no essential difference
between a bud and an ovule in their earliest stages of formation; so
that, in fact, “sports” support my view, that variability may be
largely attributed to the ovules or pollen, or to both, having been
affected by the treatment of the parent prior to the act of conception.
These cases anyhow show that variation is not necessarily connected, as
some authors have supposed, with the act of generation.
Seedlings from the same fruit, and the young of the same litter,
sometimes differ considerably from each other, though both the young
and the parents, as Müller has remarked, have apparently been exposed
to exactly the same conditions of life; and this shows how unimportant
the direct effects of the conditions of life are in comparison with the
laws of reproduction, and of growth, and of inheritance; for had the
action of the conditions been direct, if any of the young had varied,
all would probably have varied in the same manner. To judge how much,
in the case of any variation, we should attribute to the direct action
of heat, moisture, light, food, etc., is most difficult: my impression
is, that with animals such agencies have produced very little direct
effect, though apparently more in the case of plants. Under this point
of view, Mr. Buckman’s recent experiments on plants seem extremely
valuable. When all or nearly all the individuals exposed to certain
conditions are affected in the same way, the change at first appears to
be directly due to such conditions; but in some cases it can be shown
that quite opposite conditions produce
similar changes of structure. Nevertheless some slight amount of change
may, I think, be attributed to the direct action of the conditions of
life—as, in some cases, increased size from amount of food, colour from
particular kinds of food and from light, and perhaps the thickness of
fur from climate.
Habit also has a decided influence, as in the period of flowering with
plants when transported from one climate to another. In animals it has
a more marked effect; for instance, I find in the domestic duck that
the bones of the wing weigh less and the bones of the leg more, in
proportion to the whole skeleton, than do the same bones in the
wild-duck; and I presume that this change may be safely attributed to
the domestic duck flying much less, and walking more, than its wild
parent. The great and inherited development of the udders in cows and
goats in countries where they are habitually milked, in comparison with
the state of these organs in other countries, is another instance of
the effect of use. Not a single domestic animal can be named which has
not in some country drooping ears; and the view suggested by some
authors, that the drooping is due to the disuse of the muscles of the
ear, from the animals not being much alarmed by danger, seems probable.
There are many laws regulating variation, some few of which can be
dimly seen, and will be hereafter briefly mentioned. I will here only
allude to what may be called correlation of growth. Any change in the
embryo or larva will almost certainly entail changes in the mature
animal. In monstrosities, the correlations between quite distinct parts
are very curious; and many instances are given in Isidore Geoffroy St.
Hilaire’s great work on this subject. Breeders believe that long limbs
are almost always accompanied by an elongated head. Some instances of
correlation are quite whimsical; thus
cats with blue eyes are invariably deaf; colour and constitutional
peculiarities go together, of which many remarkable cases could be
given amongst animals and plants. From the facts collected by
Heusinger, it appears that white sheep and pigs are differently
affected from coloured individuals by certain vegetable poisons.
Hairless dogs have imperfect teeth; long-haired and coarse-haired
animals are apt to have, as is asserted, long or many horns; pigeons
with feathered feet have skin between their outer toes; pigeons with
short beaks have small feet, and those with long beaks large feet.
Hence, if man goes on selecting, and thus augmenting, any peculiarity,
he will almost certainly unconsciously modify other parts of the
structure, owing to the mysterious laws of the correlation of growth.
The result of the various, quite unknown, or dimly seen laws of
variation is infinitely complex and diversified. It is well worth while
carefully to study the several treatises published on some of our old
cultivated plants, as on the hyacinth, potato, even the dahlia, etc.;
and it is really surprising to note the endless points in structure and
constitution in which the varieties and sub-varieties differ slightly
from each other. The whole organisation seems to have become plastic,
and tends to depart in some small degree from that of the parental
type.
Any variation which is not inherited is unimportant for us. But the
number and diversity of inheritable deviations of structure, both those
of slight and those of considerable physiological importance, is
endless. Dr. Prosper Lucas’s treatise, in two large volumes, is the
fullest and the best on this subject. No breeder doubts how strong is
the tendency to inheritance: like produces like is his fundamental
belief: doubts have been thrown on this principle by theoretical
writers alone. When a
deviation appears not unfrequently, and we see it in the father and
child, we cannot tell whether it may not be due to the same original
cause acting on both; but when amongst individuals, apparently exposed
to the same conditions, any very rare deviation, due to some
extraordinary combination of circumstances, appears in the parent—say,
once amongst several million individuals—and it reappears in the child,
the mere doctrine of chances almost compels us to attribute its
reappearance to inheritance. Every one must have heard of cases of
albinism, prickly skin, hairy bodies, etc., appearing in several
members of the same family. If strange and rare deviations of structure
are truly inherited, less strange and commoner deviations may be freely
admitted to be inheritable. Perhaps the correct way of viewing the
whole subject, would be, to look at the inheritance of every character
whatever as the rule, and non-inheritance as the anomaly.
The laws governing inheritance are quite unknown; no one can say why
the same peculiarity in different individuals of the same species, and
in individuals of different species, is sometimes inherited and
sometimes not so; why the child often reverts in certain characters to
its grandfather or grandmother or other much more remote ancestor; why
a peculiarity is often transmitted from one sex to both sexes or to one
sex alone, more commonly but not exclusively to the like sex. It is a
fact of some little importance to us, that peculiarities appearing in
the males of our domestic breeds are often transmitted either
exclusively, or in a much greater degree, to males alone. A much more
important rule, which I think may be trusted, is that, at whatever
period of life a peculiarity first appears, it tends to appear in the
offspring at a corresponding age, though sometimes earlier. In many
cases this could
not be otherwise: thus the inherited peculiarities in the horns of
cattle could appear only in the offspring when nearly mature;
peculiarities in the silkworm are known to appear at the corresponding
caterpillar or cocoon stage. But hereditary diseases and some other
facts make me believe that the rule has a wider extension, and that
when there is no apparent reason why a peculiarity should appear at any
particular age, yet that it does tend to appear in the offspring at the
same period at which it first appeared in the parent. I believe this
rule to be of the highest importance in explaining the laws of
embryology. These remarks are of course confined to the first
_appearance_ of the peculiarity, and not to its primary cause, which
may have acted on the ovules or male element; in nearly the same manner
as in the crossed offspring from a short-horned cow by a long-horned
bull, the greater length of horn, though appearing late in life, is
clearly due to the male element.
Having alluded to the subject of reversion, I may here refer to a
statement often made by naturalists—namely, that our domestic
varieties, when run wild, gradually but certainly revert in character
to their aboriginal stocks. Hence it has been argued that no deductions
can be drawn from domestic races to species in a state of nature. I
have in vain endeavoured to discover on what decisive facts the above
statement has so often and so boldly been made. There would be great
difficulty in proving its truth: we may safely conclude that very many
of the most strongly-marked domestic varieties could not possibly live
in a wild state. In many cases we do not know what the aboriginal stock
was, and so could not tell whether or not nearly perfect reversion had
ensued. It would be quite necessary, in order to prevent the effects of
intercrossing, that only a
single variety should be turned loose in its new home. Nevertheless, as
our varieties certainly do occasionally revert in some of their
characters to ancestral forms, it seems to me not improbable, that if
we could succeed in naturalising, or were to cultivate, during many
generations, the several races, for instance, of the cabbage, in very
poor soil (in which case, however, some effect would have to be
attributed to the direct action of the poor soil), that they would to a
large extent, or even wholly, revert to the wild aboriginal stock.
Whether or not the experiment would succeed, is not of great importance
for our line of argument; for by the experiment itself the conditions
of life are changed. If it could be shown that our domestic varieties
manifested a strong tendency to reversion,—that is, to lose their
acquired characters, whilst kept under unchanged conditions, and whilst
kept in a considerable body, so that free intercrossing might check, by
blending together, any slight deviations of structure, in such case, I
grant that we could deduce nothing from domestic varieties in regard to
species. But there is not a shadow of evidence in favour of this view:
to assert that we could not breed our cart and race-horses, long and
short-horned cattle, and poultry of various breeds, and esculent
vegetables, for an almost infinite number of generations, would be
opposed to all experience. I may add, that when under nature the
conditions of life do change, variations and reversions of character
probably do occur; but natural selection, as will hereafter be
explained, will determine how far the new characters thus arising shall
be preserved.
When we look to the hereditary varieties or races of our domestic
animals and plants, and compare them with species closely allied
together, we generally perceive in each domestic race, as already
remarked, less uniformity of character than in true species. Domestic
races of
the same species, also, often have a somewhat monstrous character; by
which I mean, that, although differing from each other, and from the
other species of the same genus, in several trifling respects, they
often differ in an extreme degree in some one part, both when compared
one with another, and more especially when compared with all the
species in nature to which they are nearest allied. With these
exceptions (and with that of the perfect fertility of varieties when
crossed,—a subject hereafter to be discussed), domestic races of the
same species differ from each other in the same manner as, only in most
cases in a lesser degree than, do closely-allied species of the same
genus in a state of nature. I think this must be admitted, when we find
that there are hardly any domestic races, either amongst animals or
plants, which have not been ranked by some competent judges as mere
varieties, and by other competent judges as the descendants of
aboriginally distinct species. If any marked distinction existed
between domestic races and species, this source of doubt could not so
perpetually recur. It has often been stated that domestic races do not
differ from each other in characters of generic value. I think it could
be shown that this statement is hardly correct; but naturalists differ
most widely in determining what characters are of generic value; all
such valuations being at present empirical. Moreover, on the view of
the origin of genera which I shall presently give, we have no right to
expect often to meet with generic differences in our domesticated
productions.
When we attempt to estimate the amount of structural difference between
the domestic races of the same species, we are soon involved in doubt,
from not knowing whether they have descended from one or several
parent-species. This point, if it could be cleared up, would be
interesting; if, for instance, it could be shown that the greyhound,
bloodhound, terrier, spaniel, and bull-dog, which we all know propagate
their kind so truly, were the offspring of any single species, then
such facts would have great weight in making us doubt about the
immutability of the many very closely allied and natural species—for
instance, of the many foxes—inhabiting different quarters of the world.
I do not believe, as we shall presently see, that all our dogs have
descended from any one wild species; but, in the case of some other
domestic races, there is presumptive, or even strong, evidence in
favour of this view.
It has often been assumed that man has chosen for domestication animals
and plants having an extraordinary inherent tendency to vary, and
likewise to withstand diverse climates. I do not dispute that these
capacities have added largely to the value of most of our domesticated
productions; but how could a savage possibly know, when he first tamed
an animal, whether it would vary in succeeding generations, and whether
it would endure other climates? Has the little variability of the ass
or guinea-fowl, or the small power of endurance of warmth by the
rein-deer, or of cold by the common camel, prevented their
domestication? I cannot doubt that if other animals and plants, equal
in number to our domesticated productions, and belonging to equally
diverse classes and countries, were taken from a state of nature, and
could be made to breed for an equal number of generations under
domestication, they would vary on an average as largely as the parent
species of our existing domesticated productions have varied.
In the case of most of our anciently domesticated animals and plants, I
do not think it is possible to come to any definite conclusion, whether
they have descended from one or several species. The argument mainly
relied on by those who believe in the multiple origin
of our domestic animals is, that we find in the most ancient records,
more especially on the monuments of Egypt, much diversity in the
breeds; and that some of the breeds closely resemble, perhaps are
identical with, those still existing. Even if this latter fact were
found more strictly and generally true than seems to me to be the case,
what does it show, but that some of our breeds originated there, four
or five thousand years ago? But Mr. Horner’s researches have rendered
it in some degree probable that man sufficiently civilized to have
manufactured pottery existed in the valley of the Nile thirteen or
fourteen thousand years ago; and who will pretend to say how long
before these ancient periods, savages, like those of Tierra del Fuego
or Australia, who possess a semi-domestic dog, may not have existed in
Egypt?
The whole subject must, I think, remain vague; nevertheless, I may,
without here entering on any details, state that, from geographical and
other considerations, I think it highly probable that our domestic dogs
have descended from several wild species. In regard to sheep and goats
I can form no opinion. I should think, from facts communicated to me by
Mr. Blyth, on the habits, voice, and constitution, etc., of the humped
Indian cattle, that these had descended from a different aboriginal
stock from our European cattle; and several competent judges believe
that these latter have had more than one wild parent. With respect to
horses, from reasons which I cannot give here, I am doubtfully inclined
to believe, in opposition to several authors, that all the races have
descended from one wild stock. Mr. Blyth, whose opinion, from his large
and varied stores of knowledge, I should value more than that of almost
any one, thinks that all the breeds of poultry have proceeded from the
common wild
Indian fowl (Gallus bankiva). In regard to ducks and rabbits, the
breeds of which differ considerably from each other in structure, I do
not doubt that they all have descended from the common wild duck and
rabbit.
The doctrine of the origin of our several domestic races from several
aboriginal stocks, has been carried to an absurd extreme by some
authors. They believe that every race which breeds true, let the
distinctive characters be ever so slight, has had its wild prototype.
At this rate there must have existed at least a score of species of
wild cattle, as many sheep, and several goats in Europe alone, and
several even within Great Britain. One author believes that there
formerly existed in Great Britain eleven wild species of sheep peculiar
to it! When we bear in mind that Britain has now hardly one peculiar
mammal, and France but few distinct from those of Germany and
conversely, and so with Hungary, Spain, etc., but that each of these
kingdoms possesses several peculiar breeds of cattle, sheep, etc., we
must admit that many domestic breeds have originated in Europe; for
whence could they have been derived, as these several countries do not
possess a number of peculiar species as distinct parent-stocks? So it
is in India. Even in the case of the domestic dogs of the whole world,
which I fully admit have probably descended from several wild species,
I cannot doubt that there has been an immense amount of inherited
variation. Who can believe that animals closely resembling the Italian
greyhound, the bloodhound, the bull-dog, or Blenheim spaniel, etc.—so
unlike all wild Canidæ—ever existed freely in a state of nature? It has
often been loosely said that all our races of dogs have been produced
by the crossing of a few aboriginal species; but by crossing we can get
only forms in some degree intermediate between their parents; and if we
account for our several domestic races by this process, we must admit
the former existence of the most extreme forms, as the Italian
greyhound, bloodhound, bull-dog, etc., in the wild state. Moreover, the
possibility of making distinct races by crossing has been greatly
exaggerated. There can be no doubt that a race may be modified by
occasional crosses, if aided by the careful selection of those
individual mongrels, which present any desired character; but that a
race could be obtained nearly intermediate between two extremely
different races or species, I can hardly believe. Sir J. Sebright
expressly experimentised for this object, and failed. The offspring
from the first cross between two pure breeds is tolerably and sometimes
(as I have found with pigeons) extremely uniform, and everything seems
simple enough; but when these mongrels are crossed one with another for
several generations, hardly two of them will be alike, and then the
extreme difficulty, or rather utter hopelessness, of the task becomes
apparent. Certainly, a breed intermediate between _two very distinct_
breeds could not be got without extreme care and long-continued
selection; nor can I find a single case on record of a permanent race
having been thus formed.
_On the Breeds of the Domestic Pigeon_.—Believing that it is always
best to study some special group, I have, after deliberation, taken up
domestic pigeons. I have kept every breed which I could purchase or
obtain, and have been most kindly favoured with skins from several
quarters of the world, more especially by the Honourable W. Elliot from
India, and by the Honourable C. Murray from Persia. Many treatises in
different languages have been published on pigeons, and some of them
are very important, as being of considerable antiquity. I have
associated with several eminent fanciers, and have been permitted to
join two
of the London Pigeon Clubs. The diversity of the breeds is something
astonishing. Compare the English carrier and the short-faced tumbler,
and see the wonderful difference in their beaks, entailing
corresponding differences in their skulls. The carrier, more especially
the male bird, is also remarkable from the wonderful development of the
carunculated skin about the head, and this is accompanied by greatly
elongated eyelids, very large external orifices to the nostrils, and a
wide gape of mouth. The short-faced tumbler has a beak in outline
almost like that of a finch; and the common tumbler has the singular
and strictly inherited habit of flying at a great height in a compact
flock, and tumbling in the air head over heels. The runt is a bird of
great size, with long, massive beak and large feet; some of the
sub-breeds of runts have very long necks, others very long wings and
tails, others singularly short tails. The barb is allied to the
carrier, but, instead of a very long beak, has a very short and very
broad one. The pouter has a much elongated body, wings, and legs; and
its enormously developed crop, which it glories in inflating, may well
excite astonishment and even laughter. The turbit has a very short and
conical beak, with a line of reversed feathers down the breast; and it
has the habit of continually expanding slightly the upper part of the
oesophagus. The Jacobin has the feathers so much reversed along the
back of the neck that they form a hood, and it has, proportionally to
its size, much elongated wing and tail feathers. The trumpeter and
laugher, as their names express, utter a very different coo from the
other breeds. The fantail has thirty or even forty tail-feathers,
instead of twelve or fourteen, the normal number in all members of the
great pigeon family; and these feathers are kept expanded, and are
carried so erect that in good birds the head and tail
touch; the oil-gland is quite aborted. Several other less distinct
breeds might have been specified.
In the skeletons of the several breeds, the development of the bones of
the face in length and breadth and curvature differs enormously. The
shape, as well as the breadth and length of the ramus of the lower jaw,
varies in a highly remarkable manner. The number of the caudal and
sacral vertebræ vary; as does the number of the ribs, together with
their relative breadth and the presence of processes. The size and
shape of the apertures in the sternum are highly variable; so is the
degree of divergence and relative size of the two arms of the furcula.
The proportional width of the gape of mouth, the proportional length of
the eyelids, of the orifice of the nostrils, of the tongue (not always
in strict correlation with the length of beak), the size of the crop
and of the upper part of the oesophagus; the development and abortion
of the oil-gland; the number of the primary wing and caudal feathers;
the relative length of wing and tail to each other and to the body; the
relative length of leg and of the feet; the number of scutellæ on the
toes, the development of skin between the toes, are all points of
structure which are variable. The period at which the perfect plumage
is acquired varies, as does the state of the down with which the
nestling birds are clothed when hatched. The shape and size of the eggs
vary. The manner of flight differs remarkably; as does in some breeds
the voice and disposition. Lastly, in certain breeds, the males and
females have come to differ to a slight degree from each other.
Altogether at least a score of pigeons might be chosen, which if shown
to an ornithologist, and he were told that they were wild birds, would
certainly, I think, be ranked by him as well-defined species. Moreover,
I do not believe that any ornithologist would place touch; the
oil-gland is quite aborted. Several other less distinct breeds might
have been specified.
the English carrier, the short-faced tumbler, the runt, the barb,
pouter, and fantail in the same genus; more especially as in each of
these breeds several truly-inherited sub-breeds, or species as he might
have called them, could be shown him.
Great as the differences are between the breeds of pigeons, I am fully
convinced that the common opinion of naturalists is correct, namely,
that all have descended from the rock-pigeon (Columba livia), including
under this term several geographical races or sub-species, which differ
from each other in the most trifling respects. As several of the
reasons which have led me to this belief are in some degree applicable
in other cases, I will here briefly give them. If the several breeds
are not varieties, and have not proceeded from the rock-pigeon, they
must have descended from at least seven or eight aboriginal stocks; for
it is impossible to make the present domestic breeds by the crossing of
any lesser number: how, for instance, could a pouter be produced by
crossing two breeds unless one of the parent-stocks possessed the
characteristic enormous crop? The supposed aboriginal stocks must all
have been rock-pigeons, that is, not breeding or willingly perching on
trees. But besides C. livia, with its geographical sub-species, only
two or three other species of rock-pigeons are known; and these have
not any of the characters of the domestic breeds. Hence the supposed
aboriginal stocks must either still exist in the countries where they
were originally domesticated, and yet be unknown to ornithologists; and
this, considering their size, habits, and remarkable characters, seems
very improbable; or they must have become extinct in the wild state.
But birds breeding on precipices, and good fliers, are unlikely to be
exterminated; and the common rock-pigeon, which has the same habits
with the domestic breeds, has not been exterminated
even on several of the smaller British islets, or on the shores of the
Mediterranean. Hence the supposed extermination of so many species
having similar habits with the rock-pigeon seems to me a very rash
assumption. Moreover, the several above-named domesticated breeds have
been transported to all parts of the world, and, therefore, some of
them must have been carried back again into their native country; but
not one has ever become wild or feral, though the dovecot-pigeon, which
is the rock-pigeon in a very slightly altered state, has become feral
in several places. Again, all recent experience shows that it is most
difficult to get any wild animal to breed freely under domestication;
yet on the hypothesis of the multiple origin of our pigeons, it must be
assumed that at least seven or eight species were so thoroughly
domesticated in ancient times by half-civilized man, as to be quite
prolific under confinement.