forked from YoDaMa/BikeAnalysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBikedata.m
231 lines (179 loc) · 5.08 KB
/
Bikedata.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
function Bikedata(filename)
close all;
Fs = 100; % Visually inspecting the oscilloscope
%filename = 'Bike_1.csv'
SENS_DATA = importdata(filename);
parsedata = SENS_DATA.data;
dlen = length(parsedata(:,1));
fdel = 20;
edel = 20;
SENS_DATA = parsedata(fdel*Fs:dlen-edel*Fs,:);
% SENS_DATA = parsedata(1:timedel*Fs,:);
timestamp = SENS_DATA(:,1);
% ATT_R = SENS_DATA(:,2);
% ATT_P = SENS_DATA(:,3);
% ATT_Y = SENS_DATA(:,4);
% ROTR_X = SENS_DATA(:,5);
% ROTR_Y = SENS_DATA(:,6);
% ROTR_Z = SENS_DATA(:,7);
% GR_X = SENS_DATA(:,8);
% GR_Y = SENS_DATA(:,9);
% GR_Z = SENS_DATA(:,10);
UA_X = SENS_DATA(:,11);
UA_Y = SENS_DATA(:,12);
UA_Z = SENS_DATA(:,13);
% MAG_X = SENS_DATA(:,12);
% MAG_Y = SENS_DATA(:,13);
% MAG_Z = SENS_DATA(:,14);
keep_rows = find(~isnan(UA_X)); % find the 1s produced by isnan.
% User acceleration
Accel_X = UA_X(keep_rows);
Accel_Y = UA_Y(keep_rows);
Accel_Z = UA_Z(keep_rows);
ts = timestamp(keep_rows);
ts = ts - ts(1);
[~,sorted] = sort(ts);
Accel_X = Accel_X(sorted);
% Accel_X(:) = 0;
Accel_Y = Accel_Y(sorted);
% Accel_Y(:) = 0;
Accel_Z = Accel_Z(sorted);
% Accel_Z(:) = 0;
accel = [Accel_X Accel_Y Accel_Z];
% Time length of signal
sigtime = length(Accel_X)/Fs/60.0;
writing = sprintf('\nThe signal length is %d minutes.\n',sigtime);
disp(writing);
powX = bandpower(Accel_X); % Find the power contained between 30 and 40s of Acceleration data after removing 20s noise.
powY = bandpower(Accel_Y);
powZ = bandpower(Accel_Z);
powers = [powX powY powZ];
ptot = sum(powers);
[~,powidx] = max(powers);
npowX = bandpower(Accel_X(1:11*Fs));
npowY = bandpower(Accel_Y(1:11*Fs));
npowZ = bandpower(Accel_Z(1:11*Fs));
% % Remove the signal with the least power.
% % This may be redundant considering weighting.
%
% switch powidx
% case 1
%
% Accel_X(:) = 0;
% disp('X has lowest power')
% case 2
% Accel_Y(:) = 0;
% powY = 0;
% disp('Y has lowest power')
% case 3
% Accel_Z(:) = 0;
% disp('Z has lowest power')
% end
%
switch powidx % for using with max(powers)
case 1
data = Accel_X;
case 2
data = Accel_Y;
case 3
data = Accel_Z;
end
X_weight = 3*powX/ptot;
Y_weight = 3*powY/ptot;
Z_weight = 3*powZ/ptot;
t = linspace(0,length(Accel_X)/Fs,length(Accel_X));
figure;
subplot(211);
plot(t,Accel_X,'b');
hold on;
plot(t,Accel_Y,'m');
plot(t,Accel_Z,'r');
xlabel('Time (sec)');
ylabel('User Acceleration (m/s^2)');
title('Cadence of Bike User');
%data = sqrt((Z_weight.*Accel_Z).^2+(Y_weight.*Accel_Y).^2+(X_weight.*Accel_X).^2);
%data = Accel_X;
data = data-mean(data);% subtract DC value
plot(t,data,'g','linewidth',1);
hold off;
legend('X','Y','Z','Selected');
% Unfiltered Data
fftlength = 2^nextpow2(length(data));
L = length(data);
fdata = fft(data, fftlength) / L;
ctr = (fftlength / 2) + 1;
faxis = 60*(Fs / 2) .* linspace(0,1, ctr); % multiply by 60 for RPM vs RPS
mag = abs(fdata(1:ctr));
[~,idx] = max(mag);
%fftcdnc = faxis(idx)
% Plot Unfiltered Data
subplot(212);
plot(faxis,mag); hold on;
title('FFT of Weighted Averaged Data');
xlabel('Frequency (RPM)');
ylabel('Magnitude');
% Filtered Data
cutfreq = [.25 15];
[b,a] = butter(4,cutfreq./(Fs./2));
lpf = filter(b,a,data);
bdata = fft(lpf,fftlength) / L;
[~,idx] = max(abs(bdata(1:ctr)));
% bdata(idx) = 0;
fftcadence = faxis(idx);
plot(faxis,abs(bdata(1:ctr)),'linewidth',1);
legend('unfilt','butter LPF'); hold off;
figure;
subplot 221;
% windlen = floor(length(lpf)/10);
windt = 4;
windlen = floor(windt*Fs);
nlap= [];
nfft=2^nextpow2(windlen);
wind = hamming(windlen);
spectrogram(lpf,wind,nlap,nfft,Fs,'yaxis');hold on;
title('Spectrogram (4s)');
% colorbar;
%plot(t,f(I),q,'r','linewidth',2);
hold off;
subplot 222;
[s,f,t,pxx]=spectrogram(lpf,wind,nlap,nfft,Fs,'yaxis');
% disp(['Spectrogram time: ', num2str(t(length(t))),' seconds.']);
[~,I] = max(10*log10(pxx)); % largest PSD in each column (STFT).
cadot = 60*f(I); %cadence over time
cadlen = length(cadot);
x = linspace(0,t(length(t)),cadlen);
stairs(x,cadot,'linewidth',2);
grid on;
title('Discrete Cadence Over Time');
xlabel('Time (mins)');
ylabel('Cadence (RPM)');
subplot 223;
windt = 12.8;
windlen = floor(windt*Fs);
nlap= [];
nfft=2^nextpow2(windlen);
wind = hamming(windlen);
spectrogram(lpf,wind,nlap,nfft,Fs,'yaxis');hold on;
title('Spectrogram (12.8s)');
subplot 224;
[~,f,t,pxx]=spectrogram(lpf,wind,nlap,nfft,Fs,'yaxis');
[M,I] = max(10*log10(pxx)); % largest PSD in each column (STFT).
M
cadot = 60*f(I);
cadlen = length(cadot);
x = linspace(0,t(length(t)),cadlen);
stairs(x,cadot,'linewidth',2);
grid on;
title('Discrete Cadence Over Time');
xlabel('Time (mins)');
ylabel('Cadence (RPM)');
avgcadence = mean(cadot);
% save output over time to .csv file
fname = strsplit(filename,'.csv');
newfilename = sprintf('%speaks.csv',fname{1});
q = [x',cadot];
disp(['Window Length: ',num2str(windlen)]);
disp(['FFT Peak: ',num2str(fftcadence)]);
disp(['STFT Avg: ', num2str(avgcadence)]);
csvwrite(newfilename,q);
end