-
Notifications
You must be signed in to change notification settings - Fork 106
/
Copy pathrng.h
406 lines (337 loc) · 9.8 KB
/
rng.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#ifndef RNG_H_
#define RNG_H_
#define __STDC_FORMAT_MACROS 1
#include <stdlib.h>
#include <stddef.h>
#include <inttypes.h>
///=============================================================================
/// Compiler and Platform Features
///=============================================================================
typedef int8_t i8;
typedef uint8_t u8;
typedef int16_t i16;
typedef uint16_t u16;
typedef int32_t i32;
typedef uint32_t u32;
typedef int64_t i64;
typedef uint64_t u64;
typedef float f32;
typedef double f64;
#define STRUCT(S) typedef struct S S; struct S
#if __GNUC__
#define IABS(X) __builtin_abs(X)
#define PREFETCH(PTR,RW,LOC) __builtin_prefetch(PTR,RW,LOC)
#define likely(COND) (__builtin_expect(!!(COND),1))
#define unlikely(COND) (__builtin_expect((COND),0))
#define ATTR(...) __attribute__((__VA_ARGS__))
#define BSWAP32(X) __builtin_bswap32(X)
#define UNREACHABLE() __builtin_unreachable()
#else
#define IABS(X) ((int)abs(X))
#define PREFETCH(PTR,RW,LOC)
#define likely(COND) (COND)
#define unlikely(COND) (COND)
#define ATTR(...)
static inline uint32_t BSWAP32(uint32_t x) {
x = ((x & 0x000000ff) << 24) | ((x & 0x0000ff00) << 8) |
((x & 0x00ff0000) >> 8) | ((x & 0xff000000) >> 24);
return x;
}
#if _MSC_VER
#define UNREACHABLE() __assume(0)
#else
#define UNREACHABLE() exit(1) // [[noreturn]]
#endif
#endif
/// imitate amd64/x64 rotate instructions
static inline ATTR(const, always_inline, artificial)
uint64_t rotl64(uint64_t x, uint8_t b)
{
return (x << b) | (x >> (64-b));
}
static inline ATTR(const, always_inline, artificial)
uint32_t rotr32(uint32_t a, uint8_t b)
{
return (a >> b) | (a << (32-b));
}
/// integer floor divide
static inline ATTR(const, always_inline)
int32_t floordiv(int32_t a, int32_t b)
{
int32_t q = a / b;
int32_t r = a % b;
return q - ((a ^ b) < 0 && !!r);
}
///=============================================================================
/// C implementation of Java Random
///=============================================================================
static inline void setSeed(uint64_t *seed, uint64_t value)
{
*seed = (value ^ 0x5deece66d) & ((1ULL << 48) - 1);
}
static inline int next(uint64_t *seed, const int bits)
{
*seed = (*seed * 0x5deece66d + 0xb) & ((1ULL << 48) - 1);
return (int) ((int64_t)*seed >> (48 - bits));
}
static inline int nextInt(uint64_t *seed, const int n)
{
int bits, val;
const int m = n - 1;
if ((m & n) == 0) {
uint64_t x = n * (uint64_t)next(seed, 31);
return (int) ((int64_t) x >> 31);
}
do {
bits = next(seed, 31);
val = bits % n;
}
while ((int32_t)((uint32_t)bits - val + m) < 0);
return val;
}
static inline uint64_t nextLong(uint64_t *seed)
{
return ((uint64_t) next(seed, 32) << 32) + next(seed, 32);
}
static inline float nextFloat(uint64_t *seed)
{
return next(seed, 24) / (float) (1 << 24);
}
static inline double nextDouble(uint64_t *seed)
{
uint64_t x = (uint64_t)next(seed, 26);
x <<= 27;
x += next(seed, 27);
return (int64_t) x / (double) (1ULL << 53);
}
/* A macro to generate the ideal assembly for X = nextInt(*S, 24)
* This is a macro and not an inline function, as many compilers can make use
* of the additional optimisation passes for the surrounding code.
*/
#define JAVA_NEXT_INT24(S,X) \
do { \
uint64_t a = (1ULL << 48) - 1; \
uint64_t c = 0x5deece66dULL * (S); \
c += 11; a &= c; \
(S) = a; \
a = (uint64_t) ((int64_t)a >> 17); \
c = 0xaaaaaaab * a; \
c = (uint64_t) ((int64_t)c >> 36); \
(X) = (int)a - (int)(c << 3) * 3; \
} while (0)
/* Jumps forwards in the random number sequence by simulating 'n' calls to next.
*/
static inline void skipNextN(uint64_t *seed, uint64_t n)
{
uint64_t m = 1;
uint64_t a = 0;
uint64_t im = 0x5deece66dULL;
uint64_t ia = 0xb;
uint64_t k;
for (k = n; k; k >>= 1)
{
if (k & 1)
{
m *= im;
a = im * a + ia;
}
ia = (im + 1) * ia;
im *= im;
}
*seed = *seed * m + a;
*seed &= 0xffffffffffffULL;
}
///=============================================================================
/// Xoroshiro 128
///=============================================================================
STRUCT(Xoroshiro)
{
uint64_t lo, hi;
};
static inline void xSetSeed(Xoroshiro *xr, uint64_t value)
{
const uint64_t XL = 0x9e3779b97f4a7c15ULL;
const uint64_t XH = 0x6a09e667f3bcc909ULL;
const uint64_t A = 0xbf58476d1ce4e5b9ULL;
const uint64_t B = 0x94d049bb133111ebULL;
uint64_t l = value ^ XH;
uint64_t h = l + XL;
l = (l ^ (l >> 30)) * A;
h = (h ^ (h >> 30)) * A;
l = (l ^ (l >> 27)) * B;
h = (h ^ (h >> 27)) * B;
l = l ^ (l >> 31);
h = h ^ (h >> 31);
xr->lo = l;
xr->hi = h;
}
static inline uint64_t xNextLong(Xoroshiro *xr)
{
uint64_t l = xr->lo;
uint64_t h = xr->hi;
uint64_t n = rotl64(l + h, 17) + l;
h ^= l;
xr->lo = rotl64(l, 49) ^ h ^ (h << 21);
xr->hi = rotl64(h, 28);
return n;
}
static inline int xNextInt(Xoroshiro *xr, uint32_t n)
{
uint64_t r = (xNextLong(xr) & 0xFFFFFFFF) * n;
if ((uint32_t)r < n)
{
while ((uint32_t)r < (~n + 1) % n)
{
r = (xNextLong(xr) & 0xFFFFFFFF) * n;
}
}
return r >> 32;
}
static inline double xNextDouble(Xoroshiro *xr)
{
return (xNextLong(xr) >> (64-53)) * 1.1102230246251565E-16;
}
static inline float xNextFloat(Xoroshiro *xr)
{
return (xNextLong(xr) >> (64-24)) * 5.9604645E-8F;
}
static inline void xSkipN(Xoroshiro *xr, int count)
{
while (count --> 0)
xNextLong(xr);
}
static inline uint64_t xNextLongJ(Xoroshiro *xr)
{
int32_t a = xNextLong(xr) >> 32;
int32_t b = xNextLong(xr) >> 32;
return ((uint64_t)a << 32) + b;
}
static inline int xNextIntJ(Xoroshiro *xr, uint32_t n)
{
int bits, val;
const int m = n - 1;
if ((m & n) == 0) {
uint64_t x = n * (xNextLong(xr) >> 33);
return (int) ((int64_t) x >> 31);
}
do {
bits = (xNextLong(xr) >> 33);
val = bits % n;
}
while ((int32_t)((uint32_t)bits - val + m) < 0);
return val;
}
//==============================================================================
// MC Seed Helpers
//==============================================================================
/**
* The seed pipeline:
*
* getLayerSalt(n) -> layerSalt (ls)
* layerSalt (ls), worldSeed (ws) -> startSalt (st), startSeed (ss)
* startSeed (ss), coords (x,z) -> chunkSeed (cs)
*
* The chunkSeed alone is enough to generate the first PRNG integer with:
* mcFirstInt(cs, mod)
* subsequent PRNG integers are generated by stepping the chunkSeed forwards,
* salted with startSalt:
* cs_next = mcStepSeed(cs, st)
*/
static inline uint64_t mcStepSeed(uint64_t s, uint64_t salt)
{
return s * (s * 6364136223846793005ULL + 1442695040888963407ULL) + salt;
}
static inline int mcFirstInt(uint64_t s, int mod)
{
int ret = (int)(((int64_t)s >> 24) % mod);
if (ret < 0)
ret += mod;
return ret;
}
static inline int mcFirstIsZero(uint64_t s, int mod)
{
return (int)(((int64_t)s >> 24) % mod) == 0;
}
static inline uint64_t getChunkSeed(uint64_t ss, int x, int z)
{
uint64_t cs = ss + x;
cs = mcStepSeed(cs, z);
cs = mcStepSeed(cs, x);
cs = mcStepSeed(cs, z);
return cs;
}
static inline uint64_t getLayerSalt(uint64_t salt)
{
uint64_t ls = mcStepSeed(salt, salt);
ls = mcStepSeed(ls, salt);
ls = mcStepSeed(ls, salt);
return ls;
}
static inline uint64_t getStartSalt(uint64_t ws, uint64_t ls)
{
uint64_t st = ws;
st = mcStepSeed(st, ls);
st = mcStepSeed(st, ls);
st = mcStepSeed(st, ls);
return st;
}
static inline uint64_t getStartSeed(uint64_t ws, uint64_t ls)
{
uint64_t ss = ws;
ss = getStartSalt(ss, ls);
ss = mcStepSeed(ss, 0);
return ss;
}
///============================================================================
/// Arithmatic
///============================================================================
/* Linear interpolations
*/
static inline double lerp(double part, double from, double to)
{
return from + part * (to - from);
}
static inline double lerp2(
double dx, double dy, double v00, double v10, double v01, double v11)
{
return lerp(dy, lerp(dx, v00, v10), lerp(dx, v01, v11));
}
static inline double lerp3(
double dx, double dy, double dz,
double v000, double v100, double v010, double v110,
double v001, double v101, double v011, double v111)
{
v000 = lerp2(dx, dy, v000, v100, v010, v110);
v001 = lerp2(dx, dy, v001, v101, v011, v111);
return lerp(dz, v000, v001);
}
static inline double clampedLerp(double part, double from, double to)
{
if (part <= 0) return from;
if (part >= 1) return to;
return lerp(part, from, to);
}
/* Find the modular inverse: (1/x) | mod m.
* Assumes x and m are positive (less than 2^63), co-prime.
*/
static inline ATTR(const)
uint64_t mulInv(uint64_t x, uint64_t m)
{
uint64_t t, q, a, b, n;
if ((int64_t)m <= 1)
return 0; // no solution
n = m;
a = 0; b = 1;
while ((int64_t)x > 1)
{
if (m == 0)
return 0; // x and m are co-prime
q = x / m;
t = m; m = x % m; x = t;
t = a; a = b - q * a; b = t;
}
if ((int64_t)b < 0)
b += n;
return b;
}
#endif /* RNG_H_ */