-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_model.py
25 lines (21 loc) · 1018 Bytes
/
load_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import pickle
def run_model():
#Predict input data
#Load model
lasso_model = pickle.load(open("./save_model/lasso.sav", "rb"))
ENet_model = pickle.load(open("./save_model/ENet.sav", "rb"))
KRR_model = pickle.load(open("./save_model/KRR.sav", "rb"))
GBoost_model = pickle.load(open("./save_model/GBoost.sav", "rb"))
model_xgb_model = pickle.load(open("./save_model/model_xgb.sav", "rb"))
model_lgb_model = pickle.load(open("./save_model/model_lgb.sav", "rb"))
x_test = df_test.to_numpy()
lasso_predict = lasso_model.predict(x_test)
ENet_predict = ENet_model.predict(x_test)
KRR_predict = KRR_model.predict(x_test)
GBoost_predict = GBoost_model.predict(x_test)
XGB_predict = model_xgb_model.predict(x_test)
LGB_predict = model_lgb_model.predict(x_test)
y_predict = (lasso_predict + ENet_predict + KRR_predict + GBoost_predict + XGB_predict + LGB_predict)/6
y_predict = np.exp(y_predict)
y_predict = y_predict.astype(int)
return y_predict[0]