-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
973 lines (798 loc) · 42.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
import numpy as np
from matplotlib import patches
import matplotlib.pyplot as plt
class DirectedAngleInterval():
def __init__(self, angle1, angle2, direction):
# direction = 'ccw' or 'cw'
# angle1 and angle2 are in range(-180, 180], or both None, in this case, the interval is a full circle
# from angle1 to angle2 in the given direction
# if direction == 'ccw', then angle1 < angle2
# if direction == 'cw', then angle1 > angle2
if angle1 is None:
assert angle2 is None
if direction == 'ccw':
angle1, angle2 = -180, 180
elif direction == 'cw':
angle1, angle2 = 180, -180
else:
assert angle1 > -180 and angle1 <= 180
assert angle2 > -180 and angle2 <= 180
self.angle1 = angle1
self.angle2 = angle2
self.direction = direction
@property
def angle_length(self):
if self.direction == 'ccw':
if self.angle1 > 0 and self.angle2 < 0:
return (180 - self.angle1) + (180 + self.angle2)
else:
return self.angle2 - self.angle1
elif self.direction == 'cw':
if self.angle1 < 0 and self.angle2 > 0:
return (180 + self.angle1) + (180 - self.angle2)
else:
return self.angle1 - self.angle2
def contain(self, direction):
if self.direction == 'ccw':
if self.angle1 > 0 and self.angle2 < 0:
if direction > self.angle1 or direction < self.angle2:
return True
else:
return False
else:
if self.angle1 < direction < self.angle2:
return True
else:
return False
elif self.direction == 'cw':
raise NotImplemented
def get_mid_angle(self):
if self.direction == 'ccw':
return (self.angle1 + self.angle2) / 2
elif self.direction == 'cw':
raise NotImplemented
def max(self, target_direction):
# target_direction in range(-180, 180], since np.arctan2 returns (-180, 180]
# return the angle in this interval that follows the target_direction best
assert target_direction > -180 and target_direction <= 180
if self.contain(target_direction):
return target_direction
else:
mid_angle = self.get_mid_angle()
if DirectedAngleInterval(self.angle2, round_angle(mid_angle + 180), 'ccw').contain(target_direction):
return self.angle2
else:
return self.angle1
def min(self, target_direction):
# target_direction in range[-180, 180)
# return the angle in this interval that follows the target_direction worst
return round_angle(self.max(round_angle(target_direction+180)))
def round_angle(angle):
# # round angle to (-180, 180]
if angle > 180:
angle -= 360
elif angle <= -180:
angle += 360
assert angle > -180 and angle <= 180
return angle
def find_first_right(prev_direction, next_directions):
next_direction_val = [_[0] for _ in next_directions]
if prev_direction > min(next_direction_val):
order = np.argsort(next_direction_val)
next_direction_val = np.array(next_direction_val)[order]
# find the first element in next_directions that is smaller than prev_direction
return order[np.where(np.array(next_direction_val) < prev_direction)[0][-1]]
else:
# find the largest element in next_directions
return np.argmax(next_direction_val)
def angle_linspace(start, end, clockwise, resolution):
# start in range(-180, 180)
# end in range(-180, 180)
# clockwise: bool, True if we want to go clockwise, False if we want to go counterclockwise
# resolution: float, the distance between two points on the arc
# TODO rewrite this function with DirectedAngleInterval class
if start is None:
assert end is None
return np.arange(180, -180, -resolution) # a full circle, travel clockwise, and the region is to the right of the arc
elif start < end <= 0 and not clockwise:
return np.arange(start, end, resolution)
elif end < start <= 0 and clockwise:
return np.arange(start, end, -resolution)
elif 0 <= start < end and not clockwise:
return np.arange(start, end, resolution)
elif start < 0 and end > 0 and not clockwise:
return np.arange(start, end, resolution)
elif start > end >= 0 and clockwise:
return np.arange(start, end, -resolution)
elif start < 0 and end > 0 and clockwise:
return np.concatenate([np.arange(start, -180, -resolution), np.arange(180, end, -resolution)])
elif start > 0 and end < 0 and not clockwise:
return np.concatenate([np.arange(start, 180, resolution), np.arange(-180, end, resolution)])
elif start > 0 and end < 0 and clockwise:
return np.arange(start, end, -resolution)
elif start == end:
return np.array([start])
else:
raise NotImplemented
class Region():
def __init__(self):
pass
self.arc_ls = []
self.relation_ls = {} # relationship with all the circles in the figure, key: circle_id
self.p1_to_p2_ls = []
# self.right_or_left_ls = [] # 没啥用
def add_arc(self, arc, in_out: str, p1_to_p2: bool):
# in_out: the region is inside the circle or outside the circle
# in_out: 'in' or 'out'
# p1_to_p2: the direction of the arc that we travel
self.arc_ls.append(arc)
self.relation_ls[arc.circle.id] = in_out + '_boundary'
# this region is in (or out) the circle of this arc, and the arc is the boundary of the region
self.p1_to_p2_ls.append(p1_to_p2)
# if (in_out == 'in' and p1_to_p2) or (in_out == 'out' and not p1_to_p2):
# self.right_or_left_ls.append('left')
# else:
# self.right_or_left_ls.append('right')
def checkIfClockwise(self):
# compute how many degrees we turned right and how many degrees we turned left as we travel the region
# positive for right, negative for left
degree = 0
if len(self.arc_ls) == 1:
# this region has only one arc (a full circle)
self.clockwise = True
return
for i in range(len(self.arc_ls)):
arc = self.arc_ls[i]
p1_to_p2 = self.p1_to_p2_ls[i]
if p1_to_p2: # the angle when traveling along the arc
# turn left
degree -= arc.angle_length
else:
# turn right
degree += arc.angle_length
# the angle when moving from the end point of the arc to the start point of the next arc
if i != len(self.arc_ls) - 1:
prev_end_direction = arc.dir_1_to_2 if p1_to_p2 else arc.dir_2_to_1
next_start_direction = round_angle(self.arc_ls[i+1].dir_2_to_1+180) if self.p1_to_p2_ls[i+1] else round_angle(self.arc_ls[i+1].dir_1_to_2+180)
degree += DirectedAngleInterval(prev_end_direction, next_start_direction, 'cw').angle_length
else:
# from end point of the last arc to start point of the first arc
prev_end_direction = arc.dir_1_to_2 if p1_to_p2 else arc.dir_2_to_1
next_start_direction = round_angle(self.arc_ls[0].dir_2_to_1+180) if self.p1_to_p2_ls[0] else round_angle(self.arc_ls[0].dir_1_to_2+180)
degree += DirectedAngleInterval(prev_end_direction, next_start_direction, 'cw').angle_length
if degree > 0:
self.clockwise = True
else:
self.clockwise = False
def finalize(self, circle_ls):
"""
Should be called when all arcs are added (start point == end point).
In this function we check if the region is closed, and if there is full circle inside of the region.
"""
# check if the region is closed
assert self.is_closed()
self.checkIfClockwise()
# check and save the relationship of this region with other circles
# ignore the circles of the arcs of this region
ignore_circle_id_ls = [arc.circle_id for arc in self.arc_ls]
for circle in circle_ls:
if circle.id in ignore_circle_id_ls:
pass
else:
# the given circle is not the circle of any arc in this region
# thus its boundary is either inside or outside of this region
# we simply pick a point on the circle and check its relationship with this region
self.relation_ls[circle.id] = self.checkRelationWithPoint((circle.x, circle.y+circle.r))
# sort the relation_ls by circle_id
self.relation_ls = {k: v for k, v in sorted(self.relation_ls.items(), key=lambda item: item[0])}
# if there is circle totally inside of this region
# if 'in' in self.relation_ls.values():
# a = 1
def checkRelationWithPoint(self, point):
# if the point is exactly on the boundary of the region, then we consider it is outside of the region
# https://en.wikipedia.org/wiki/Point_in_polygon
# implement Ray Casting Algorithm first
direction = 0 # the ray starts from point and goes to the right
n_cross = 0
for arc in self.arc_ls:
# arc.checkRelationWithRay(point, direction), we only use direction = 0 for simplicity, thus no need to implement this function
# compute the intersection of the line of the ray and the circle of the arc
if point[1] > arc.circle.y + arc.circle.r or point[1] < arc.circle.y - arc.circle.r:
# the ray does not intersect with the circle of the arc
# thus the ray does not intersect with the arc
n_cross += 0
else:
if point[1] == arc.circle.y + arc.circle.r:
# the ray intersects with the circle of the arc at the top point
# circle_line_intersect = [(arc.circle.x, arc.circle.y + arc.circle.r)]
n_cross += 0 # if the point is exactly on the boundary of the region, then we consider it is outside of the region
elif point[1] == arc.circle.y - arc.circle.r:
# the ray intersects with the circle of the arc at the bottom point
# circle_line_intersect = [(arc.circle.x, arc.circle.y - arc.circle.r)]
n_cross += 0 # if the point is exactly on the boundary of the region, then we consider it is outside of the region
else:
# the ray intersects with the circle of the arc at two points
# compute the intersection points
# https://stackoverflow.com/a/1084899/13114834
dx = np.sqrt(arc.circle.r**2 - (point[1] - arc.circle.y)**2)
if arc.circle.x - dx >= point[0]:
n_cross += int(arc.checkRelationWithPointOnCircle(arc.circle.x - dx, point[1]))
if arc.circle.x + dx >= point[0]:
n_cross += int(arc.checkRelationWithPointOnCircle(arc.circle.x + dx, point[1]))
if self.clockwise:
return 'in' if n_cross % 2 == 1 else 'out'
else:
return 'out' if n_cross % 2 == 1 else 'in'
def distance_to_point(self, x, y):
# return max_distance, min_distance
# max_distance: the max distance from (x, y) to all arcs in this region
# min_distance: the min distance from (x, y) to all arcs in this region
max_distance = -np.inf
min_distance = np.inf
for arc in self.arc_ls:
max_distance_arc, min_distance_arc = arc.distance_to_point(x, y)
max_distance = max(max_distance, max_distance_arc)
min_distance = min(min_distance, min_distance_arc)
return max_distance, min_distance
def is_closed(self):
start_point_id = self.arc_ls[0].point_1_id if self.p1_to_p2_ls[0] else self.arc_ls[0].point_2_id
end_point_id = self.arc_ls[-1].point_2_id if self.p1_to_p2_ls[-1] else self.arc_ls[-1].point_1_id
return start_point_id == end_point_id
@property
def range(self):
assert self.is_closed()
x_min, y_min = np.inf, np.inf
x_max, y_max = -np.inf, -np.inf
for arc in self.arc_ls:
arc_range = arc.range
x_min = min(x_min, arc_range['x_min'])
x_max = max(x_max, arc_range['x_max'])
y_min = min(y_min, arc_range['y_min'])
y_max = max(y_max, arc_range['y_max'])
return {'x_min': x_min, 'x_max': x_max, 'y_min': y_min, 'y_max': y_max}
def plot(self, axes, circle_ls, resolution=0.1, alpha=0.3, color='g', debug=False, adapt_range=False):
# for each arc, generate list of points on the arc
all_x = []
all_y = []
for i in range(len(self.arc_ls)):
arc = self.arc_ls[i]
theta1, theta2 = arc.get_angle()
from_theta = theta1 if self.p1_to_p2_ls[i] else theta2
to_theta = theta2 if self.p1_to_p2_ls[i] else theta1
# if self.p1_to_p2_ls[i], then we are in counterclockwise direction
# else we are in clockwise direction
theta_ls = angle_linspace(from_theta, to_theta, clockwise=not self.p1_to_p2_ls[i], resolution=resolution)
x = arc.circle.x + arc.circle.r * np.cos(theta_ls * np.pi / 180)
y = arc.circle.y + arc.circle.r * np.sin(theta_ls * np.pi / 180)
# plt.figure()
# if debug:
# plt.scatter(x, y, c=np.arange(len(x)))
all_x.append(x)
all_y.append(y)
all_x = np.concatenate(all_x)
all_y = np.concatenate(all_y)
extra = 0.3
if 'in' in self.relation_ls.values():
if self.clockwise:
# we travel along the arcs in a clockwise direction
# and the region is to the right hand side of our travel direction
# the region is inside the boundary of the arcs
# we need to exclude the circles that are totally inside of this region
# we sample points on the circles that is totally inside of this region
# find the circles that are totally inside of this region
circle_id_ls = [i for i in self.relation_ls.keys() if self.relation_ls[i] == 'in']
if len(circle_id_ls) == 1:
# circle_ls[circle_id_ls[0]]
x, y, r = circle_ls[circle_id_ls[0]].x, circle_ls[circle_id_ls[0]].y, circle_ls[circle_id_ls[0]].r
theta_ls = np.arange(-180, 180, resolution)
x_ls = x + r * np.cos(theta_ls * np.pi / 180)
y_ls = y + r * np.sin(theta_ls * np.pi / 180)
all_x = np.concatenate([all_x, x_ls])
all_y = np.concatenate([all_y, y_ls])
else:
raise NotImplemented
else:
# TODO
# raise NotImplemented
pass
fill_right(x=all_x, y=all_y, axes=axes, alpha=alpha, color=color, debug=debug, extra=extra)
if adapt_range:
region_range = self.range
x_len = region_range['x_max'] - region_range['x_min']
y_len = region_range['y_max'] - region_range['y_min']
axes.set_xlim(region_range['x_min'] - x_len * extra, region_range['x_max'] + x_len * extra)
axes.set_ylim(region_range['y_min'] - y_len * extra, region_range['y_max'] + y_len * extra)
class Arc():
def __init__(self, circle, arc_id, point_1, point_2, circle_ls):
# TODO use DirectedAngleInterval to store theta1 and theta2 directly
# this arc from point_1 to point_2 in counterclockwise direction
# we need circle_ls to identify the relationship of this arc with other circles (either in or out)
self.circle_id = circle.id
self.circle = circle # the circle object, the information is not updated, only use its (x,y,r)
self.arc_id = arc_id
if point_1 is None:
self.point_1_id = None
self.point_2_id = None
else:
self.point_1_id = point_1.id
self.point_2_id = point_2.id
self.point_1 = point_1
self.point_2 = point_2
self.theta1, self.theta2 = self.get_angle()
self.n_used = 0
# identify the relationship of this arc with other circles (either in or out)
# self.check_in_out(circle_ls)
self.get_tangent_direction()
@property
def angle_length(self):
# from point_1 to point_2 in counterclockwise direction
# how many degrees we need to turn
return DirectedAngleInterval(self.theta1, self.theta2, 'ccw').angle_length
raise NotImplemented
def distance_to_point(self, x, y):
# return max_distance, min_distance
# max_distance: the max distance from (x, y) to this arc
# min_distance: the min distance from (x, y) to this arc
target_direction = np.arctan2(self.circle.y - y, self.circle.x - x) * 180 / np.pi
farthest_p, closest_p = self.get_farthest_point(target_direction)
max_distance = d(x, y, farthest_p.x, farthest_p.y)
min_distance = d(x, y, closest_p.x, closest_p.y)
return max_distance, min_distance
def checkRelationWithPointOnCircle(self, x, y):
# check if a point (x, y) that on the circle of this arc, lies on the arc
# return True if the point lies on the arc, False otherwise
assert self.circle.checkPointRelation(x, y) == 'on'
angle = self.getAngleForPointOnCircle(x, y)
return DirectedAngleInterval(self.theta1, self.theta2, 'ccw').contain(angle)
def checkCircleRelation(self, circle):
# identify the relationship of this arc with other circles (either in or out)
if circle.id == self.circle_id:
return 'is'
else:
if circle in self.circle.is_inside_circle_ls:
# self.circle is inside of the given circle
# thus this arc is inside of the given circle
return 'in'
elif circle in self.circle.is_outside_circle_ls:
# self.circle is outside of the given circle
# thus this arc is outside of the given circle
return 'out'
else:
target_direction = np.arctan2(self.circle.y - circle.y, self.circle.x - circle.x) * 180 / np.pi
farthest_p, closest_p = self.get_farthest_point(target_direction)
# farthest_p 是 arc上距离circle圆心最远的点
# closest_p 是 arc上距离circle圆心最近的点
if circle.checkPointRelation(farthest_p.x, farthest_p.y):
assert circle.checkPointRelation(closest_p.x, closest_p.y)
return 'in'
else:
assert not circle.checkPointRelation(closest_p.x, closest_p.y)
return 'out'
# def check_in_out(self, circle_ls):
# # TODO used in Region.finalize(), only requires check if this arc is inside or outside of circles with no intersection points
# # identify the relationship of this arc with other circles (either in or out)
# self.in_out_ls = []
# for circle in circle_ls:
# if circle.id == self.circle_id:
# self.in_out_ls.append('is')
# else:
# if circle in self.circle.is_inside_circle_ls:
# # self.circle is inside of the given circle
# # thus this arc is inside of the given circle
# self.in_out_ls.append('in')
# elif circle in self.circle.is_outside_circle_ls:
# # self.circle is outside of the given circle
# # thus this arc is outside of the given circle
# self.in_out_ls.append('out')
# else:
# target_direction = np.arctan2(self.circle.y - circle.y, self.circle.x - circle.x) * 180 / np.pi
# farthest_p, closest_p = self.get_farthest_point(target_direction)
# farthest_p 是 arc上距离circle圆心最远的点
# closest_p 是 arc上距离circle圆心最近的点
# if circle.checkPointRelation(farthest_p.x, farthest_p.y):
# assert circle.checkPointRelation(closest_p.x, closest_p.y)
# self.in_out_ls.append('in')
# else:
# assert not circle.checkPointRelation(closest_p.x, closest_p.y)
# self.in_out_ls.append('out')
# # more computation required
# # the closet point on self.circle to the center of the given circle
# closest_angle = np.arctan2(circle.y - self.circle.y, circle.x - self.circle.x) * 180 / np.pi
# farest_angle = round_angle(closest_angle + 180)
# if closest_angle < self.theta1 < self.theta2 < farest_angle:
# # point_1 is closest to the center of the given circle
# # point_2 is farest to the center of the given circle
# # check if point_1 is inside of the given circle
# point_1_in_circle = circle.checkPointRelation(self.point_1.x, self.point_1.y)
# point_2_in_circle = circle.checkPointRelation(self.point_2.x, self.point_2.y)
# if point_1_in_circle and point_2_in_circle:
# self.in_out_ls.append('in')
# else:
# raise NotImplemented
# elif self.theta1 < self.theta2 < farest_angle < 0 < closest_angle:
# # 1 is closest, 2 is farest
# point_1_in_circle = circle.checkPointRelation(self.point_1.x, self.point_1.y)
# point_2_in_circle = circle.checkPointRelation(self.point_2.x, self.point_2.y)
# if point_1_in_circle and point_2_in_circle:
# self.in_out_ls.append('in')
# elif not point_1_in_circle and not point_2_in_circle:
# self.in_out_ls.append('out')
# else:
# raise NotImplemented
# elif farest_angle < self.theta1 < self.theta2 < 0 < closest_angle:
# # 2 is closest, 1 is farest
# point_1_in_circle = circle.checkPointRelation(self.point_1.x, self.point_1.y)
# point_2_in_circle = circle.checkPointRelation(self.point_2.x, self.point_2.y)
# if point_1_in_circle and point_2_in_circle:
# self.in_out_ls.append('in')
# elif not point_1_in_circle and not point_2_in_circle:
# self.in_out_ls.append('out')
# else:
# raise NotImplemented
# elif farest_angle == self.theta1 < self.theta2 < 0 < closest_angle:
# # 2 is closest, 1 is farest
# point_1_in_circle = circle.checkPointRelation(self.point_1.x, self.point_1.y)
# point_2_in_circle = circle.checkPointRelation(self.point_2.x, self.point_2.y)
# if point_1_in_circle and point_2_in_circle:
# self.in_out_ls.append('in')
# elif not point_1_in_circle and not point_2_in_circle:
# self.in_out_ls.append('out')
# else:
# raise NotImplemented
# else:
# raise NotImplemented
def get_tangent_direction(self):
if self.point_1 is not None:
self.dir_1_to_2 = round_angle(180 - np.arctan2(self.point_2.x - self.circle.x, self.point_2.y - self.circle.y) * 180 / np.pi)
self.dir_2_to_1 = round_angle(- np.arctan2(self.point_1.x - self.circle.x, self.point_1.y - self.circle.y) * 180 / np.pi)
else:
pass
def getAngleForPointOnCircle(self, x, y):
assert self.circle.checkPointRelation(x, y) == 'on'
# return the angle of the point on the circle of this arc
# the angle is in range(-180, 180]
return round_angle(np.arctan2(y - self.circle.y, x - self.circle.x) * 180 / np.pi)
def get_angle(self):
# TODO reimplement this function with getAngleForPointOnCircle
# get theta_1 and theta_2, in counterclockwise direction
# theta_1 is the smaller angle
# [0, 360) ?
if self.point_1_id is None:
return None, None
else:
theta_1 = round_angle(np.arctan2(self.point_1.y - self.circle.y, self.point_1.x - self.circle.x) * 180 / np.pi)
theta_2 = round_angle(np.arctan2(self.point_2.y - self.circle.y, self.point_2.x - self.circle.x) * 180 / np.pi)
return theta_1, theta_2
def get_other_point(self, point_id):
assert point_id in [self.point_1_id, self.point_2_id]
if point_id == self.point_1_id:
return self.point_2_id
else:
return self.point_1_id
def get_plt_patch(self, linewidth):
if self.theta1 is not None:
arc = patches.Arc(xy=(self.circle.x, self.circle.y),
width=self.circle.r*2,
height=self.circle.r*2,
angle=0, # rotate angle
theta1=self.theta1,
theta2=self.theta2,
color='r',
linewidth=linewidth)
else:
# this arc is a full circle
arc = patches.Circle(xy=(self.circle.x, self.circle.y), radius=self.circle.r, color='r', fill=False, linewidth=linewidth)
return arc
def plot(self, axes, linewidth=2):
# plot the arc on the figure
# if axes is a list
if isinstance(axes, list):
for ax in axes:
arc = self.get_plt_patch(linewidth)
ax.add_patch(arc)
else:
arc = self.get_plt_patch(linewidth)
axes.add_patch(arc)
# also see https://stackoverflow.com/a/45579263/13114834 to draw arrow on arc
# a function get the farthest point and closest point on the arc to a given direction
def get_farthest_point(self, direction):
# direction in range(-180, 180)
# return farthest point, closest point
arc_angle_interval = DirectedAngleInterval(self.theta1, self.theta2, 'ccw')
max_angle = arc_angle_interval.max(direction)
min_angle = arc_angle_interval.min(direction)
farthest_point = Point(x=self.circle.x + self.circle.r * np.cos(max_angle * np.pi / 180), y=self.circle.y + self.circle.r * np.sin(max_angle * np.pi / 180), id=None, circle_1=None, circle_2=None, angles=None)
closest_point = Point(x=self.circle.x + self.circle.r * np.cos(min_angle * np.pi / 180), y=self.circle.y + self.circle.r * np.sin(min_angle * np.pi / 180), id=None, circle_1=None, circle_2=None, angles=None)
return farthest_point, closest_point
@property
def range(self):
x_max_p, x_min_p = self.get_farthest_point(0)
y_max_p, y_min_p = self.get_farthest_point(90)
return {'x_max': x_max_p.x, 'x_min': x_min_p.x, 'y_max': y_max_p.y, 'y_min': y_min_p.y}
class Circle():
def __init__(self, x, y, r, id):
self.x = x
self.y = y
self.r = r
self.id = id
self.intersection_point_ls = []
self.intersection_point_angle_ls = []
self.is_inside_circle_ls = [] # list of other circles that this circle is inside of
self.is_outside_circle_ls = [] # list of other circles that this circle is outside of
def add_intersection_point(self, point):
self.intersection_point_ls.append(point)
angle = np.arctan2(point.y - self.y, point.x - self.x)
self.intersection_point_angle_ls.append(angle)
def find_arcs(self, arc_id, circle_ls):
# return a list of Arc objects
if len(self.intersection_point_ls) == 0:
# if no intersection point, return a full circle
arc_ls = [Arc(circle=self, arc_id=arc_id, point_1=None, point_2=None, circle_ls=circle_ls)]
n_arc = 1
else:
# sort the intersection points by angle
order = np.argsort(self.intersection_point_angle_ls)
self.intersection_point_ls = np.array(self.intersection_point_ls)[order]
self.intersection_point_angle_ls = np.array(self.intersection_point_angle_ls)[order]
# find the arcs
arc_ls = []
n_arc = 0
for i in range(len(self.intersection_point_ls) - 1):
arc = Arc(circle=self, arc_id=arc_id+n_arc, point_1=self.intersection_point_ls[i], point_2=self.intersection_point_ls[i + 1], circle_ls=circle_ls)
arc_ls.append(arc)
n_arc += 1
arc = Arc(circle=self, arc_id=arc_id+n_arc, point_1=self.intersection_point_ls[-1], point_2=self.intersection_point_ls[0], circle_ls=circle_ls)
arc_ls.append(arc)
n_arc = len(arc_ls)
return arc_ls, len(arc_ls)
def plot(self, axes, color):
circle = patches.Circle(xy=(self.x, self.y), radius=self.r, color=color, fill=False, label='C{}'.format(self.id))
axes.add_patch(circle)
def checkPointRelation(self, point_x, point_y):
"""
Determines the relationship of a given point with respect to the circle.
The function returns:
- 'inside' if the point is inside the circle,
- 'on' if the point is on the circle, and
- 'outside' if the point is outside the circle.
:param point_x: The x-coordinate of the point to check.
:param point_y: The y-coordinate of the point to check.
:return: A string indicating the relationship ('inside', 'on', or 'outside').
"""
distance_squared = (point_x - self.x) ** 2 + (point_y - self.y) ** 2
radius_squared = self.r ** 2
if np.isclose(distance_squared, radius_squared):
return 'on'
elif distance_squared < radius_squared:
return 'inside'
else:
return 'outside'
def set_inside_circle(self, circle):
self.is_inside_circle_ls.append(circle)
def set_outside_circle(self, circle):
self.is_outside_circle_ls.append(circle)
class Point():
def __init__(self, x, y, id, circle_1, circle_2, angles):
self.x = x
self.y = y
self.id = id
self.connected_arc_ids = []
self.circle_1 = circle_1
self.circle_2 = circle_2
self.angles = angles
self.axes_plotted = {}
def set_id(self, id):
assert self.id is None
self.id = id
def add_arc(self, arc_id):
self.connected_arc_ids.append(arc_id)
def plot(self, axes, textsize, alpha):
# scatter on the given axes
if isinstance(axes, list):
for ax in axes:
if ax not in self.axes_plotted:
ax.scatter(self.x, self.y, s=20, label='P{}'.format(self.id))
ax.text(self.x, self.y, 'P{}'.format(self.id), fontsize=textsize, alpha=alpha)
self.axes_plotted[ax] = True
else:
if axes not in self.axes_plotted:
axes.scatter(self.x, self.y, s=20, label='P{}'.format(self.id))
axes.text(self.x, self.y, 'P{}'.format(self.id), fontsize=textsize, alpha=alpha)
self.axes_plotted[axes] = True
def d(p1x, p1y, p2x, p2y):
return np.sqrt((p1x - p2x)**2 + (p1y - p2y)**2)
def get_direction(of, at, towards):
# get direction of "circle_of" at "point_at, towards both inside and outside of "circle_towards"
# return a tuple of (inside, outside)
direction_1 = - np.arctan2(of.x - at[0], of.y - at[1]) * 180 / np.pi
assert direction_1 >= -180 and direction_1 < 180
direction_2 = (direction_1 - 180)
if direction_2 >= 180:
direction_2 -= 360
elif direction_2 < -180:
direction_2 += 360
assert direction_2 >= -180 and direction_2 < 180
# direction_out: vector(from c_towards to at) * direction_out > 0
if np.dot(np.array([at[0]-towards.x, at[1]-towards.y]), np.array([np.cos(direction_1 * np.pi / 180), np.sin(direction_1 * np.pi / 180)])) > 0:
direction_out = direction_1
direction_in = direction_2
else:
direction_out = direction_2
direction_in = direction_1
return (direction_in, direction_out)
# direction_2 = direction_1 - 180
# assert direction_2 >= -180 and direction_2 < 180
# which direction is inside? depends on start from center of circle_towards then go to center of circle_of, then go to point_at
# if the angle is increasing, then the direction is inside
# if the angle is decreasing, then the direction is outside
# get the angle from center of circle_towards to center of circle_of
# raise NotImplemented
def intersect_two_circle(c1, c2):
# return two intersection points
# if no intersection, return None
c1x, c1y, r1 = c1.x, c1.y, c1.r
c2x, c2y, r2 = c2.x, c2.y, c2.r
if d(c1x, c1y, c2x, c2y) > r1 + r2:
# save c1 in c2 or c2 in c1 for later use
c1.set_outside_circle(c2)
c2.set_outside_circle(c1)
return None
elif d(c1x, c1y, c2x, c2y) < abs(r1 - r2):
if r1 < r2: # c1 is inside c2
c1.set_inside_circle(c2)
c2.set_outside_circle(c1)
elif r1 > r2: # c2 is inside c1
c2.set_inside_circle(c1)
c1.set_outside_circle(c2)
else:
raise NotImplemented
return None
else:
a = (r1**2 - r2**2 + d(c1x, c1y, c2x, c2y)**2) / (2 * d(c1x, c1y, c2x, c2y))
h = np.sqrt(r1**2 - a**2)
x2 = c1x + a * (c2x - c1x) / d(c1x, c1y, c2x, c2y)
y2 = c1y + a * (c2y - c1y) / d(c1x, c1y, c2x, c2y)
p1x = x2 + h * (c2y - c1y) / d(c1x, c1y, c2x, c2y)
p1y = y2 - h * (c2x - c1x) / d(c1x, c1y, c2x, c2y)
p2x = x2 - h * (c2y - c1y) / d(c1x, c1y, c2x, c2y)
p2y = y2 + h * (c2x - c1x) / d(c1x, c1y, c2x, c2y)
p1 = (p1x, p1y)
p2 = (p2x, p2y)
d_c1_in_c2_at_p1, d_c1_out_c2_at_p1 = get_direction(of=c1, at=p1, towards=c2)
d_c1_in_c2_at_p2, d_c1_out_c2_at_p2 = get_direction(of=c1, at=p2, towards=c2)
d_c2_in_c1_at_p1, d_c2_out_c1_at_p1 = get_direction(of=c2, at=p1, towards=c1)
d_c2_in_c1_at_p2, d_c2_out_c1_at_p2 = get_direction(of=c2, at=p2, towards=c1)
return {'p1': Point(p1x, p1y, None, c1, c2, {'d_c1_in_c2': d_c1_in_c2_at_p1, 'd_c1_out_c2': d_c1_out_c2_at_p1, 'd_c2_in_c1': d_c2_in_c1_at_p1, 'd_c2_out_c1': d_c2_out_c1_at_p1}),
'p2': Point(p2x, p2y, None, c1, c2, {'d_c1_in_c2': d_c1_in_c2_at_p2, 'd_c1_out_c2': d_c1_out_c2_at_p2, 'd_c2_in_c1': d_c2_in_c1_at_p2, 'd_c2_out_c1': d_c2_out_c1_at_p2})}
def plot_two_circle(c1x, c1y, c2x, c2y, r1, r2, label: list = None):
circle = plt.Circle((c1x, c1y), r1, color='b', fill=False, label=label[0])
plt.gca().add_artist(circle)
circle = plt.Circle((c2x, c2y), r2, color='g', fill=False, label=label[1])
plt.gca().add_artist(circle)
xlim = plt.gca().get_xlim()
xlim_min = min(xlim[0], c1x - r1, c2x - r2)
xlim_max = max(xlim[1], c1x + r1, c2x + r2)
plt.xlim((xlim_min, xlim_max))
ylim = plt.gca().get_ylim()
ylim_min = min(ylim[0], c1y - r1, c2y - r2)
ylim_max = max(ylim[1], c1y + r1, c2y + r2)
plt.ylim((ylim_min, ylim_max))
plt.gca().set_aspect('equal', adjustable='box')
def fill_right(x, y, axes, alpha, color='lightgreen', debug=False, extra=0.3):
"""
Fill the region to the right of a given polygon.
Parameters:
x (list): X-coordinates of the polygon vertices.
y (list): Y-coordinates of the polygon vertices.
color (str): Color to fill the polygon. Default is light green.
debug (bool): If True, show additional plot details for debugging.
extra (float): Relative extra margin to add to the encompassing rectangle.
The function fills inside the polygon if the vertices are in clockwise order,
and fills outside if they are in counterclockwise order.
"""
if len(x) != len(y):
raise ValueError("x and y must have the same number of elements.")
if len(x) < 3:
# exit the function
Warning("At least 3 points are required to form a polygon.")
return
# Calculate the signed area of the polygon
n = len(x)
signed_area = 0.5 * sum(x[i] * y[(i + 1) % n] - x[(i + 1) % n] * y[i] for i in range(n))
orientation = "Counterclockwise" if signed_area > 0 else "Clockwise"
# Create the encompassing rectangle dynamically based on x and y range
margin_x, margin_y = (max(x) - min(x)) * extra, (max(y) - min(y)) * extra
x_min, x_max, y_min, y_max = min(x) - margin_x, max(x) + margin_x, min(y) - margin_y, max(y) + margin_y
x_rect = [x_min, x_max, x_max, x_min, x_min]
y_rect = [y_min, y_min, y_max, y_max, y_min]
if debug:
axes.scatter(x, y, c=np.arange(len(x)))
axes.set_title('From blue to yellow')
if orientation == "Counterclockwise":
# Fill outside for counterclockwise orientation
x = x[::-1] # Reverse the points
y = y[::-1]
x_combined = np.concatenate([x_rect, x])
y_combined = np.concatenate([y_rect, y])
axes.fill(x_combined, y_combined, color=color, alpha=alpha)
else:
# Fill inside for clockwise orientation
axes.fill(x, y, color=color, alpha=alpha)
if __name__ == '__main__':
import matplotlib.pyplot as plt
#### test intersect_two_circle
if False:
def test_intersect_two_circle(c1x, c1y, c2x, c2y, r1, r2, axes):
c1 = Circle(c1x, c1y, r1, 1)
c2 = Circle(c2x, c2y, r2, 2)
c1.plot(axes, color='C1')
c2.plot(axes, color='C2')
intersects = intersect_two_circle(c1, c2)
p1, p2 = intersects['p1'], intersects['p2']
p1.set_id(1)
p2.set_id(2)
# Arc(circle, arc_id, point_1, point_2)
a1 = Arc(c1, 1, p1, p2)
plt.gca().set_aspect('equal', adjustable='box')
p1.plot(axes, textsize=10, alpha=1)
p2.plot(axes, textsize=10, alpha=1)
plt.legend()
# a1.plot(axes)
# # Direction of C1 at P1 towards inside C2
# # plot a the tangent of C1 at P1 (the line perpendicular to the line connecting C1 and P1)
plt.plot([p1.x, p1.x + 10 * np.cos(p1.angles['d_c1_in_c2'] * np.pi / 180)], [p1.y, p1.y + 10 * np.sin(p1.angles['d_c1_in_c2'] * np.pi / 180)],
color='C1', label='Direction of C1 at P1 towards inside C2')
# # Direction of C1 at P1 towards outside C2
# # plot a the tangent of C1 at P1 (the line perpendicular to the line connecting C1 and P1)
plt.plot([p1.x, p1.x + 10 * np.cos(p1.angles['d_c1_out_c2'] * np.pi / 180)], [p1.y, p1.y + 10 * np.sin(p1.angles['d_c1_out_c2'] * np.pi / 180)],
color='C1', linestyle='--', label='Direction of C1 at P1 towards outside C2')
# Direction of C2 at P1 towards inside C1
# plot a the tangent of C2 at P1 (the line perpendicular to the line connecting C2 and P1)
plt.plot([p1.x, p1.x + 10 * np.cos(p1.angles['d_c2_in_c1'] * np.pi / 180)], [p1.y, p1.y + 10 * np.sin(p1.angles['d_c2_in_c1'] * np.pi / 180)],
color='C2', label='Direction of C2 at P1 towards inside C1')
# # Direction of C2 at P1 towards outside C1
# # plot a the tangent of C2 at P1 (the line perpendicular to the line connecting C2 and P1)
plt.plot([p1.x, p1.x + 10 * np.cos(p1.angles['d_c2_out_c1'] * np.pi / 180)], [p1.y, p1.y + 10 * np.sin(p1.angles['d_c2_out_c1'] * np.pi / 180)],
color='C2', linestyle='--', label='Direction of C2 at P1 towards outside C1')
# legend outside of the plot
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0.)
plt.tight_layout()
plt.title("""Direction of C1 at P1 towards inside C2: {:.2f}\n
Direction of C1 at P1 towards outside C2: {:.2f}\n
Direction of C2 at P1 towards inside C1: {:.2f}\n
Direction of C2 at P1 towards outside C1: {:.2f}""".format(p1.angles['d_c1_in_c2'], p1.angles['d_c1_out_c2'], p1.angles['d_c2_in_c1'], p1.angles['d_c2_out_c1']))
fig = plt.figure()
ax = fig.add_subplot(111)
r1 = 30
c2x = np.random.randint(-30, 30)
c2y = np.random.randint(-30, 30)
r2_min = max(0, d(0, 0, c2x, c2y) - r1)
r2_max = d(0, 0, c2x, c2y) + r1
r2 = np.random.randint(r2_min, r2_max)
test_intersect_two_circle(c1x = 0, c1y = 0, c2x = c2x, c2y = c2y, r1 = r1, r2 = r2, axes = ax)
# fig = plt.figure(figsize=(10, 7))
# ax = fig.add_subplot(121)
# test_intersect_two_circle(c1x = 0, c1y = 0, c2x = 7, c2y = 0, r1 = 8, r2 = 2, axes = ax)
# ax = fig.add_subplot(122)
# test_intersect_two_circle(c1x = 0, c1y = 0, c2x = 12, c2y = 0, r1 = 10, r2 = 5, axes = ax)
plt.show()
#### test np.arctan2
if False:
theta_ls = np.linspace(-np.pi, np.pi, 100)
x_ls = np.cos(theta_ls)
y_ls = np.sin(theta_ls)
arctan2_ls = np.arctan2(y_ls, x_ls)
plt.scatter(x_ls, y_ls, c=arctan2_ls)
plt.colorbar()
plt.title('Value of np.arctan2(y, x)')
plt.show()
### test fill_right
num_points = 100
radius = 1
theta = np.linspace(0, 2 * np.pi, num_points)
x_circle = radius * np.cos(theta)
y_circle = radius * np.sin(theta)
# counter clockwise
fill_right(x_circle, y_circle)
# clockwise
fill_right(x_circle[::-1], y_circle[::-1])