-
Notifications
You must be signed in to change notification settings - Fork 4
/
predict_loc_val.py
185 lines (137 loc) · 5.77 KB
/
predict_loc_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
from os import path, makedirs, listdir
import sys
import numpy as np
np.random.seed(1)
import random
random.seed(1)
import torch
from torch import nn
from torch.backends import cudnn
from torch.autograd import Variable
import pandas as pd
from tqdm import tqdm
import timeit
import cv2
from zoo.models import SeResNext50_Unet_Loc, Dpn92_Unet_Loc, Res34_Unet_Loc, SeNet154_Unet_Loc
from utils import *
from sklearn.model_selection import train_test_split
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
test_dir = 'test/images'
pred_folder = 'pred_loc_val'
train_dirs = ['train', 'tier3']
models_folder = 'weights'
all_files = []
for d in train_dirs:
for f in sorted(listdir(path.join(d, 'images'))):
if '_pre_disaster.png' in f:
all_files.append(path.join(d, 'images', f))
if __name__ == '__main__':
t0 = timeit.default_timer()
makedirs(pred_folder, exist_ok=True)
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
cudnn.benchmark = True
models = []
model_idxs = []
tot_len = 0
for seed in [0, 1, 2]:
train_idxs, val_idxs = train_test_split(np.arange(len(all_files)), test_size=0.1, random_state=seed)
tot_len += len(val_idxs)
model_idxs.append(val_idxs)
model_idxs.append(val_idxs)
model_idxs.append(val_idxs)
model_idxs.append(val_idxs)
snap_to_load = 'res50_loc_{}_0_best'.format(seed)
model = SeResNext50_Unet_Loc().cuda()
print("=> loading checkpoint '{}'".format(snap_to_load))
checkpoint = torch.load(path.join(models_folder, snap_to_load), map_location='cpu')
loaded_dict = checkpoint['state_dict']
sd = model.state_dict()
for k in model.state_dict():
if k in loaded_dict and sd[k].size() == loaded_dict[k].size():
sd[k] = loaded_dict[k]
loaded_dict = sd
model.load_state_dict(loaded_dict)
print("loaded checkpoint '{}' (epoch {}, best_score {})"
.format(snap_to_load, checkpoint['epoch'], checkpoint['best_score']))
model.eval()
models.append(model)
snap_to_load = 'dpn92_loc_{}_0_best'.format(seed)
model = Dpn92_Unet_Loc().cuda()
print("=> loading checkpoint '{}'".format(snap_to_load))
checkpoint = torch.load(path.join(models_folder, snap_to_load), map_location='cpu')
loaded_dict = checkpoint['state_dict']
sd = model.state_dict()
for k in model.state_dict():
if k in loaded_dict and sd[k].size() == loaded_dict[k].size():
sd[k] = loaded_dict[k]
loaded_dict = sd
model.load_state_dict(loaded_dict)
print("loaded checkpoint '{}' (epoch {}, best_score {})"
.format(snap_to_load, checkpoint['epoch'], checkpoint['best_score']))
model.eval()
models.append(model)
snap_to_load = 'se154_loc_{}_0_best'.format(seed)
model = SeNet154_Unet_Loc().cuda()
model = nn.DataParallel(model).cuda()
print("=> loading checkpoint '{}'".format(snap_to_load))
checkpoint = torch.load(path.join(models_folder, snap_to_load), map_location='cpu')
loaded_dict = checkpoint['state_dict']
sd = model.state_dict()
for k in model.state_dict():
if k in loaded_dict and sd[k].size() == loaded_dict[k].size():
sd[k] = loaded_dict[k]
loaded_dict = sd
model.load_state_dict(loaded_dict)
print("loaded checkpoint '{}' (epoch {}, best_score {})"
.format(snap_to_load, checkpoint['epoch'], checkpoint['best_score']))
model.eval()
models.append(model)
snap_to_load = 'res34_loc_{}_1_best'.format(seed)
model = Res34_Unet_Loc().cuda()
model = nn.DataParallel(model).cuda()
print("=> loading checkpoint '{}'".format(snap_to_load))
checkpoint = torch.load(path.join(models_folder, snap_to_load), map_location='cpu')
loaded_dict = checkpoint['state_dict']
sd = model.state_dict()
for k in model.state_dict():
if k in loaded_dict and sd[k].size() == loaded_dict[k].size():
sd[k] = loaded_dict[k]
loaded_dict = sd
model.load_state_dict(loaded_dict)
print("loaded checkpoint '{}' (epoch {}, best_score {})"
.format(snap_to_load, checkpoint['epoch'], checkpoint['best_score']))
model.eval()
models.append(model)
unique_idxs = np.unique(np.asarray(model_idxs))
print(tot_len, len(unique_idxs))
with torch.no_grad():
for idx in tqdm(unique_idxs):
fn = all_files[idx]
f = fn.split('/')[-1]
img = cv2.imread(fn, cv2.IMREAD_COLOR)
img = preprocess_inputs(img)
inp = []
inp.append(img)
inp.append(img[::-1, ::-1, ...])
inp = np.asarray(inp, dtype='float')
inp = torch.from_numpy(inp.transpose((0, 3, 1, 2))).float()
inp = Variable(inp).cuda()
pred = []
_i = -1
for model in models:
_i += 1
if idx not in model_idxs[_i]:
continue
msk = model(inp)
msk = torch.sigmoid(msk)
msk = msk.cpu().numpy()
pred.append(msk[0, ...])
pred.append(msk[1, :, ::-1, ::-1])
pred_full = np.asarray(pred).mean(axis=0)
msk = pred_full * 255
msk = msk.astype('uint8').transpose(1, 2, 0)
cv2.imwrite(path.join(pred_folder, '{0}.png'.format(f.replace('.png', '_part1.png'))), msk[..., 0], [cv2.IMWRITE_PNG_COMPRESSION, 9])
elapsed = timeit.default_timer() - t0
print('Time: {:.3f} min'.format(elapsed / 60))