-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTesting.py
47 lines (38 loc) · 1.67 KB
/
Testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from keras.models import load_model
from time import sleep
from keras.preprocessing.image import img_to_array
from keras.preprocessing import image
import cv2
import numpy as np
face_classifier = cv2.CascadeClassifier(
r'C:\Users\Synergiz\PycharmProjects\Emotion_Rec\haarcascade.xml')
classifier = load_model(
r'C:\Users\Synergiz\PycharmProjects\Emotion_Rec\Emo_little-h5.h5')
class_labels = ['Angry', 'Happy', 'Neutral', 'Sad', 'Surprise']
cap = cv2.VideoCapture(0)
while True:
# Grab a single frame of video
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_classifier.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
roi_gray = gray[y:y + h, x:x + w]
roi_gray = cv2.resize(roi_gray, (48, 48), interpolation=cv2.INTER_AREA)
# rect,face,image = face_detector(frame)
if np.sum([roi_gray]) != 0:
roi = roi_gray.astype('float') / 255.0
roi = img_to_array(roi)
roi = np.expand_dims(roi, axis=0)
# make a prediction on the ROI, then lookup the class
preds = classifier.predict(roi)[0]
label = class_labels[preds.argmax()]
label_position = (x, y)
cv2.putText(frame, label, label_position, cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 3)
else:
cv2.putText(frame, 'No Face Found', (20, 60), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 3)
cv2.imshow('Emotion Detector', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()