-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathload.py
376 lines (317 loc) · 15.4 KB
/
load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#!/usr/bin/env python
"""Strictly for loading agents to inspect. Based on `main.py`."""
import datetime
import os
import time
import argparse
import cv2
import pickle
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from os.path import join
from ravens import Dataset, Environment, cameras, agents, tasks
from ravens import utils as U
# Of critical importance! See the top of main.py for details.
MAX_ORDER = 4
# See Task().
PIXEL_SIZE = 0.003125
CAMERA_CONFIG = cameras.RealSenseD415.CONFIG
BOUNDS = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.28]])
def goal_similarity(obs, goal):
"""For goal-conditioning, measure how close current image is to goal.
Metrics: L2 and SSIM for now. The `obs` and `goal` should be of the same
format as in rollout(), where they have color/depth keys, with 3 camera
viewpoints. However, `obs` will be a list and `goal a np.array. For the
pose metrics, use the task reward.
"""
# Requires pip install scikit-image
from skimage.metrics import structural_similarity
colormap_o, _ = get_heightmap(obs=obs)
colormap_g, _ = get_heightmap(obs=goal)
L2 = np.linalg.norm(colormap_o - colormap_g) / np.prod(colormap_o.shape)
SSIM = structural_similarity(colormap_o, colormap_g, multichannel=True)
metrics = {}
metrics['L2'] = round(L2, 4)
metrics['SSIM'] = round(SSIM, 4)
return metrics
def get_heightmap(obs):
"""Reconstruct orthographic heightmaps with segmentation masks.
Here, `obs` could be current or goal, either will work.
See transporter.py, regression.py, task.py, dummy.py, and dataset.py.
We use this pattern quite a lot. Copy from transporter.py version.
"""
heightmaps, colormaps = U.reconstruct_heightmaps(
obs['color'], obs['depth'], CAMERA_CONFIG, BOUNDS, PIXEL_SIZE)
colormaps = np.float32(colormaps)
heightmaps = np.float32(heightmaps)
# Fuse maps from different views.
valid = np.sum(colormaps, axis=3) > 0
repeat = np.sum(valid, axis=0)
repeat[repeat == 0] = 1
colormap = np.sum(colormaps, axis=0) / repeat[..., None]
colormap = np.uint8(np.round(colormap))
heightmap = np.max(heightmaps, axis=0)
return colormap, heightmap
def load(path, iepisode, field):
"""Adapted from `dataset.py` so we can sample goal images. Just including
some logic to extract the episode automatically based on the index
`iepisode`, so we don't need to know the length in advance.
"""
field_path = os.path.join(path, field)
data_list = [os.path.join(field_path, x) for x in os.listdir(field_path)]
fname = [x for x in data_list if f'{iepisode:06d}' in x]
assert len(fname) == 1, fname
fname = fname[0]
return pickle.load(open(fname, 'rb'))
def debug_time_step(t, epidx, obs, act, extras, goal=None):
"""Save images and other stuff from time `t` in episode `epidx`."""
pth = 'tmp'
tt = str(t).zfill(2)
# Convert from BGR to RGB to match what we see in the GUI.
def save(fname, c_img):
cv2.imwrite(fname, img=cv2.cvtColor(c_img, cv2.COLOR_BGR2RGB))
# Save current color images from camera angles and the fused version.
for img_idx, c_img in enumerate(obs['color']):
fname = join(pth, f'ep_{epidx}_t{tt}_cimg_{img_idx}.png')
save(fname, c_img)
colormap_o, _ = get_heightmap(obs=obs)
fname = join(pth, f'ep_{epidx}_t{tt}_cimg_fused.png')
save(fname, colormap_o)
# (If applicable) save the goal color images.
if (goal is not None) and t == 1:
for img_idx, c_img in enumerate(goal['color']):
fname = join(pth, f'ep_{epidx}_t{tt}_cimg_{img_idx}_goal.png')
save(fname, c_img)
colormap_g, _ = get_heightmap(obs=goal)
fname = join(pth, f'ep_{epidx}_t{tt}_cimg_fused_goal.png')
save(fname, colormap_g)
# Print the action.
pose0 = act['params']['pose0']
pose1 = act['params']['pose1']
print(f" pose0, pose1: {U.round_pose(pose0)}, {U.round_pose(pose1)}")
# Attention. (Well, attn_input.png is also input to Transport...)
fname1 = join(pth, f'ep_{epidx}_t{tt}_attn_input.png')
fname2 = join(pth, f'ep_{epidx}_t{tt}_attn_heat_bgr.png')
cv2.imwrite(fname1, extras['input_c'])
cv2.imwrite(fname2, extras['attn_heat_bgr'])
# Transport
for idx, tran_heat in enumerate(extras['tran_heat_bgr']):
idxstr = str(idx).zfill(2)
fname = join(pth, f'ep_{epidx}_t{tt}_tran_rot_{idxstr}.png')
if idx == extras['tran_rot_argmax']:
fname = fname.replace('.png', '_rot_chosen.png')
cv2.imwrite(fname, tran_heat)
def rollout(agent, env, task, goal_conditioned, args, num_finished, debug=False):
"""Standard gym environment rollout.
Adding more debugging options (enable with debug=True), such as printing
the pose and saving the images and heatmaps. We can also run `dataset.py`
and see goal images in the `goals_out` directory.
:goal_conditioned: a boolean to check if we have goal-conditioning.
:num_finished: to track how many episodes we have finished. Ignores any
episodes drawn and then discarded due to initial states that were
already done. Also used to sample the goal states for
goal-conditioned policies. We have a fixed number of testing episodes
(characterized by goal images), so `num_finished` is the identifier.
Returns `t` to track episode length. Update (21 Aug 2020): also returns
last_stuff=(obs,info), consistent with main.py and generate_goals.py.
(13 Oct 2020): fixing so that we will always append stuff in the episode
list for gt_state agents. The problem is that the first time step (start_t=1)
wasn't saving because len(obs) = 0, but in gt_state we actually want to save.
Otherwise, a length 1 episode will have len(episode)==0 later. It's not a huge
deal because we still save the final info correctly, so that we can report
correct stats, but it helps to have the initial info because that gives us the
deltas over the starting state.
"""
if debug:
if not os.path.exists('tmp/'):
os.makedirs('tmp/')
print('')
start_t = 0
if args.agent in ['gt_state', 'gt_state_2_step']:
start_t = 1
episode = []
total_reward = 0
# Before task.reset(), need goal info for goal episode at idx `num_finished`.
if goal_conditioned:
task.goal_cond_testing = True
path = os.path.join('goals', args.task)
goal = {}
goal['color'] = load(path, num_finished, 'last_color')
goal['depth'] = load(path, num_finished, 'last_depth')
goal['info'] = load(path, num_finished, 'last_info')
goal_imgs = goal if goal_conditioned else None
# Reset env and call task.reset(), len(obs)=0 but info will have stuff for gt_state.
if goal_conditioned:
obs = env.reset(task, last_info=goal['info'])
else:
obs = env.reset(task)
info = env.info
for t in range(start_t, task.max_steps):
if debug and t > 0:
act, extras = agent.act(obs, info, goal=goal_imgs, debug_imgs=True)
else:
act = agent.act(obs, info, goal=goal_imgs)
# Optional debugging to save images, etc. Do before we get new obs.
if debug and 'params' in act:
debug_time_step(t, num_finished, obs, act, extras, goal=goal_imgs)
# (13 Oct 2020) Ah, if gt_state, we won't save at start_t=1, so let's fix that!
if (len(obs) > 0 and act['primitive']) or (args.agent in ['gt_state', 'gt_state_2_step']):
episode.append((act, info)) # don't save obs
(obs, reward, done, info) = env.step(act)
# If goal-conditioning, additionally compute image-based metrics.
if goal_conditioned and ('color' in obs and 'depth' in obs):
info['image_metrics'] = goal_similarity(obs, goal_imgs)
else:
info['image_metrics'] = None
if debug:
print(' {}/{}, rew: {:0.3f}, len(epis): {}, act: {}, info: {}'.format(t,
task.max_steps, reward, len(episode), act['primitive'], info['extras']))
if goal_conditioned:
print(' goal-conditioning image metrics: {}'.format(info['image_metrics']))
total_reward += reward
last_obs_info = (obs, info)
if done:
break
return total_reward, episode, t, last_obs_info
def is_goal_conditioned(args):
"""
Be careful with checking this condition. See `generate_goals.py`. Here,
though, we check the task name and as an extra safety measure, check that
the agent is also named with 'goal'.
Update: all right, let's modify this to incorpoate gt_state w/out too much
extra work. :(
"""
goal_tasks = ['insertion-goal', 'cable-shape-notarget', 'cable-line-notarget',
'cloth-flat-notarget', 'bag-color-goal']
goal_task = (args.task in goal_tasks)
if goal_task:
assert 'goal' in args.agent or 'gt_state' in args.agent, \
'Agent should be a goal-based agent, or gt_state agent.'
return goal_task
def ignore_this_demo(args, reward, t, last_extras):
"""In some cases, we should filter out demonstrations.
Filter for if t == 0, which means the initial state was a success, and
also if we have exit_gracefully, which means for the bag-items tasks, it
may not have had visible item(s) at the start, for some reason.
"""
ignore = (t == 0)
if 'exit_gracefully' in last_extras:
assert last_extras['exit_gracefully']
return True
return ignore
if __name__ == '__main__':
# Parse command line arguments.
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', default='0')
parser.add_argument('--disp', action='store_true')
parser.add_argument('--task', default='hanoi')
parser.add_argument('--agent', default='transporter')
parser.add_argument('--num_demos', default=1000, type=int)
parser.add_argument('--train_run', default=0, type=int)
parser.add_argument('--num_test_eps', default=20, type=int)
parser.add_argument('--num_rots', default=24, type=int,
help='Transporter rotations used from the trained model, usually 24')
parser.add_argument('--num_rots_inf', default=24, type=int,
help='Transporter rotations we want FOR INFERENCE time; it can be 1')
parser.add_argument('--hz', default=240.0, type=float)
parser.add_argument('--crop_bef_q', default=0, type=int, help='CoRL paper used 1')
parser.add_argument('--gpu_mem_limit', default=None)
parser.add_argument('--subsamp_g', action='store_true')
args = parser.parse_args()
# Configure which GPU to use.
cfg = tf.config.experimental
gpus = cfg.list_physical_devices('GPU')
if len(gpus) == 0:
print('No GPUs detected. Running with CPU.')
else:
cfg.set_visible_devices(gpus[int(args.gpu)], 'GPU')
# Configure how much GPU to use.
if args.gpu_mem_limit is not None:
MEM_LIMIT = int(1024 * float(args.gpu_mem_limit))
print(args.gpu_mem_limit)
dev_cfg = [cfg.VirtualDeviceConfiguration(memory_limit=MEM_LIMIT)]
cfg.set_virtual_device_configuration(gpus[0], dev_cfg)
# Initialize task, set to 'test,' but I think this only matters for kitting.
task = tasks.names[args.task]()
task.mode = 'test'
# Evaluate on saved snapshots. Go backwards to get better results first.
snapshot_itrs = [i*2000 for i in range(1,10+1)] # Do 10 snapshots to save on compute.
snapshot_itrs = snapshot_itrs[::-1]
if not os.path.exists('test_results'):
os.makedirs('test_results')
# Make environment once, due to issues with deformables + multiple calls.
env = Environment(args.disp, hz=args.hz)
# Check if it's goal-conditioned.
goal_conditioned = is_goal_conditioned(args)
for snapshot_itr in snapshot_itrs:
# Set random seeds, so different snapshots test on same starting states.
tf.random.set_seed(args.train_run)
np.random.seed(args.train_run)
# Set the beginning of the agent name.
name = f'{args.task}-{args.agent}-{args.num_demos}-{args.train_run}'
# Initialize agent and load from snapshot. NOTE: main difference from
# main.py is to use num_rots_inf (not args.num_rots) for inference time.
# Also, `self.name` must match what's in main.py, to load correct weights.
if args.agent == 'transporter':
name = f'{name}-rots-{args.num_rots}-crop_bef_q-{args.crop_bef_q}'
agent = agents.names[args.agent](name,
args.task,
num_rotations=args.num_rots_inf,
crop_bef_q=(args.crop_bef_q == 1))
elif 'transporter-goal' in args.agent:
assert goal_conditioned
name = f'{name}-rots-{args.num_rots}'
if args.subsamp_g:
name += '-sub_g'
else:
name += '-fin_g'
agent = agents.names[args.agent](name,
args.task,
num_rotations=args.num_rots_inf)
elif 'gt_state' in args.agent:
agent = agents.names[args.agent](name,
args.task,
one_rot_inf=(args.num_rots_inf==1),
goal_conditioned=goal_conditioned)
else:
agent = agents.names[args.agent](name, args.task)
agent.load(snapshot_itr)
print(f'\nFinished loading snapshot: {snapshot_itr}, for: {name}.')
# Hacky. Works for transporter and gt-state(2step) agents.
agent.real_task = task
# Evaluate agent. Save as list of (iter, episode_list, results(dict)).
# List `episode_list` has all the `info`s BEFORE the last one (gives
# starting state material), and the last one is `results['final_info']`.
performance = []
episode = 0
finished = 0
while finished < args.num_test_eps:
seed = 10**MAX_ORDER + episode
np.random.seed(seed)
total_reward, episode_list, length, last_obs_info = rollout(
agent, env, task, goal_conditioned, args, num_finished=finished)
_, info = last_obs_info # ignore obs
last_extras = info['extras']
if ignore_this_demo(args, total_reward, t=length, last_extras=last_extras):
print(f' Ignoring demo, {last_extras}, not counting episode {episode}')
else:
result = {'reward': total_reward, 'length': length}
result['final_info'] = info['extras']
if goal_conditioned:
result['image_metrics'] = info['image_metrics']
print(f' Test (seed {seed}): {finished}. Results: {result}')
performance.append((agent.total_iter, episode_list, result))
finished += 1
episode += 1
# Save results.
ss = str(snapshot_itr).zfill(5)
rots_inf = str(args.num_rots_inf).zfill(2)
base1 = f'{name}-rotsinf-{rots_inf}'
base2 = f'snapshot-{ss}-eps-{args.num_test_eps}.pkl'
head = os.path.join('test_results', base1)
if not os.path.exists(head):
os.makedirs(head)
fpath = os.path.join(head, base2)
with open(fpath, 'wb') as fh:
pickle.dump(performance, fh)