-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathread_dataset.py
82 lines (70 loc) · 2.47 KB
/
read_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import jsonlines
import doc_retrieval
import sentence_retrieval
import rte.rte as rte
import utilities
import spacy
import os
# from spacy.matcher import Matcher
nlp = spacy.load('en_core_web_lg')
train_file = "data/train.jsonl"
test_file = "data/shared_task_dev_public.jsonl"
dev_file = "data/dev.jsonl"
results_file = "predictions/predictions_sanity.jsonl"
wiki_dir = 'data/wiki-pages/wiki-pages'
wiki_split_docs_dir = "../wiki-pages-split"
train_file = jsonlines.open(train_file)
test_file = jsonlines.open(test_file)
dev_file = jsonlines.open(dev_file)
train_set = []
test_set = []
dev_set = []
wiki_entities = os.listdir(wiki_split_docs_dir)
for i in range(len(wiki_entities)):
wiki_entities[i] = wiki_entities[i].replace("-SLH-","/")
wiki_entities[i] = wiki_entities[i].replace("_"," ")
wiki_entities[i] = wiki_entities[i][:-5]
# for lines in train_file:
# train_set.append(lines)
#for lines in test_file:
# test_set.append(lines)
for lines in dev_file:
dev_set.append(lines)
total = 0.0
retrieved = 0.0
claim_id = 1
# # adding entities to gazetter
# matcher = Matcher(nlp.vocab,100)
# gazetter = "list_of_Wikipedia_files.txt"
# gazetter = open(gazetter,"r").readlines()
# for i in range(len(gazetter)):
# gazetter[i] = gazetter[i][:-5]
# gazetter[i] = gazetter[i].replace("-SLH-","/")
# gazetter[i] = gazetter[i].replace("_"," ")
# matcher.add(gazetter[i],utilities.on_match,nlp(gazetter[i]))
with jsonlines.open(results_file, mode='w') as writer:
for example in dev_set[:5]:
relevant_docs,entities = doc_retrieval.getRelevantDocs(example['claim'],wiki_entities,"spaCy",nlp)
print(example['claim'])
print(entities)
print(relevant_docs)
relevant_sentences = sentence_retrieval.getRelevantSentences(relevant_docs,entities,wiki_split_docs_dir)
print(relevant_sentences)
result = rte.textual_entailment_evidence_retriever(example['claim'],relevant_sentences,claim_id)
claim_id += 1
print(result)
final_result = {'id': example['id'], 'predicted_label': result['label']}
predicted_evidence = []
for evidence in result['evidence']:
predicted_evidence.append([evidence['id'],evidence['line_num']])
final_result['predicted_evidence'] = predicted_evidence
writer.write(final_result)
# if example['label']=="REFUTES" or example['label']=="SUPPORTS":
# for actual_evidence in example['evidence'][0]:
# total+=1.0
# if actual_evidence[2] in relevant_docs:
# retrieved += 1.0
# # print actual_evidence[2]
# print total
# print retrieved
# print retrieved/total