-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathprocess_image.py
346 lines (276 loc) · 11.9 KB
/
process_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import os
import random
import numpy as np
import cv2
from glob import glob
from scipy.ndimage.interpolation import rotate
from tqdm import tqdm
from sklearn.model_selection import train_test_split
def read_image(imagefile, grayscale=False):
if grayscale == True:
image = cv2.imread(imagefile)
#image = np.expand_dims(image, -1)
else:
image = cv2.imread(imagefile)
return image
def save_image(image, mask, path, binary=True):
image = np.array(image)
if binary == True:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
cv2.imwrite(path[0], image)
cv2.imwrite(path[1], mask)
def concat_images(images, rows, cols):
_, h, w, _ = images.shape
images = images.reshape((rows, cols, h, w, 3))
images = images.transpose(0, 2, 1, 3, 4)
images = images.reshape((rows * h, cols * w, 3))
return images
def check_size(size):
if type(size) == int:
size = (size, size)
if type(size) != tuple:
raise TypeError('size is int or tuple')
return size
def subtract(image):
image = image / 255
return image
def resize(image, size):
size = check_size(size)
image = cv2.resize(image, size)
return image
def center_crop(image, mask, crop_size, size):
h, w, _ = image.shape
crop_size = check_size(crop_size)
top = (h - crop_size[0]) // 2
left = (w - crop_size[1]) // 2
bottom = top + crop_size[0]
right = left + crop_size[1]
image = image[top:bottom, left:right, :]
mask = mask[top:bottom, left:right, :]
image = resize(image, size)
mask = resize(mask, size)
return image, mask
def random_crop(image, mask, crop_size, size):
crop_size = check_size(crop_size)
h, w, _ = image.shape
top = np.random.randint(0, h - crop_size[0])
left = np.random.randint(0, w - crop_size[1])
bottom = top + crop_size[0]
right = left + crop_size[1]
image = image[top:bottom, left:right, :]
mask = mask[top:bottom, left:right, :]
image = resize(image, size)
mask = resize(mask, size)
return image, mask
def horizontal_flip(image, mask, size):
image = image[:, ::-1, :]
mask = mask[:, ::-1, :]
image = resize(image, size)
mask = resize(mask, size)
return image, mask
def vertical_flip(image, mask, size):
image = image[::-1, :, :]
mask = mask[::-1, :, :]
image = resize(image, size)
mask = resize(mask, size)
return image, mask
def scale_augmentation(image, mask, scale_range, crop_size, size):
scale_size = np.random.randint(*scale_range)
image = cv2.resize(image, (scale_size, scale_size))
mask = cv2.resize(mask, (scale_size, scale_size))
image, mask = random_crop(image, mask, crop_size, size)
return image, mask
def random_rotation(image, mask, size, angle_range=(0, 90)):
h1, w1, _ = image.shape
h2, w2, _ = mask.shape
angle = np.random.randint(*angle_range)
image = rotate(image, angle)
image = resize(image, (h1, w1))
mask = rotate(mask, angle)
mask = resize(mask, (h2, w2))
image = resize(image, size)
mask = resize(mask, size)
return image, mask
def cutout(image_origin, mask_origin, mask_size, mask_value='mean'):
image = np.copy(image_origin)
mask = np.copy(mask_origin)
if mask_value == 'mean':
mask_value = image.mean()
elif mask_value == 'random':
mask_value = np.random.randint(0, 256)
h, w, _ = image.shape
top = np.random.randint(0 - mask_size // 2, h - mask_size)
left = np.random.randint(0 - mask_size // 2, w - mask_size)
bottom = top + mask_size
right = left + mask_size
if top < 0:
top = 0
if left < 0:
left = 0
image[top:bottom, left:right, :].fill(mask_value)
mask[top:bottom, left:right, :].fill(0)
image = resize(image, size)
mask = resize(mask, size)
return image, mask
def brightness_augment(img, mask, factor=0.5):
hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) #convert to hsv
hsv = np.array(hsv, dtype=np.float64)
hsv[:, :, 2] = hsv[:, :, 2] * (factor + np.random.uniform()) #scale channel V uniformly
hsv[:, :, 2][hsv[:, :, 2] > 255] = 255 #reset out of range values
rgb = cv2.cvtColor(np.array(hsv, dtype=np.uint8), cv2.COLOR_HSV2RGB)
image = resize(rgb, size)
mask = resize(mask, size)
return image, mask
def rgb_to_grayscale(img, mask):
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
img = [img, img, img]
img = np.transpose(img, (1, 2, 0))
image = resize(img, size)
mask = resize(mask, size)
return image, mask
def create_dir(name):
try:
os.mkdir(name)
except:
pass
if __name__ == '__main__':
### Image Augmentation
size = (256, 256)
crop_size = (300, 300)
path = "../../../ml_dataset/"
dataset_name = "kvasir_segmentation_dataset"
full_path = os.path.join(path, dataset_name)
new_path = "new_data/"
create_dir(new_path)
new_full_path = os.path.join(new_path, dataset_name)
train_path = os.path.join(new_full_path, "train")
valid_path = os.path.join(new_full_path, "valid")
test_path = os.path.join(new_full_path, "test")
if not os.path.exists(new_full_path):
os.mkdir(new_full_path)
for path in [train_path, valid_path, test_path]:
os.mkdir(path)
os.mkdir(os.path.join(path, "images"))
os.mkdir(os.path.join(path, "masks"))
images = glob(os.path.join(full_path, "images/", "*"))
masks = glob(os.path.join(full_path, "masks/", "*"))
images.sort()
masks.sort()
len_ids = len(images)
train_size = int((80/100)*len_ids)
valid_size = int((10/100)*len_ids) ## Here 10 is the percent of images used for validation
test_size = int((10/100)*len_ids) ## Here 10 is the percent of images used for testing
train_images, test_images = train_test_split(images, test_size=test_size, random_state=42)
train_masks, test_masks = train_test_split(masks, test_size=test_size, random_state=42)
train_images, valid_images = train_test_split(train_images, test_size=test_size, random_state=42)
train_masks, valid_masks = train_test_split(train_masks, test_size=test_size, random_state=42)
print("Total Size: ", len_ids)
print("Training Size: ", train_size)
print("Validation Size: ", valid_size)
print("Testing Size: ", test_size)
## Validation images and masks
for idx, p in tqdm(enumerate(test_images), total=len(test_images)):
## Path
name = p.split("/")[-1].split(".")[0]
image_path = test_images[idx]
mask_path = test_masks[idx]
if os.path.exists(image_path) and os.path.exists(mask_path):
image = read_image(image_path)
mask = read_image(mask_path, grayscale=True)
new_image_path = os.path.join(new_full_path, "test", "images/")
new_mask_path = os.path.join(new_full_path, "test", "masks/")
image = resize(image, size)
mask = resize(mask, size)
img_path = new_image_path + str(name) + ".jpg"
mask_path = new_mask_path + str(name) + ".jpg"
tmp_path = [img_path, mask_path]
save_image(image, mask, tmp_path)
## Testing images and masks
for idx, p in tqdm(enumerate(valid_images), total=len(valid_images)):
## Path
name = p.split("/")[-1].split(".")[0]
image_path = valid_images[idx]
mask_path = valid_masks[idx]
if os.path.exists(image_path) and os.path.exists(mask_path):
image = read_image(image_path)
mask = read_image(mask_path, grayscale=True)
new_image_path = os.path.join(new_full_path, "valid", "images/")
new_mask_path = os.path.join(new_full_path, "valid", "masks/")
image = resize(image, size)
mask = resize(mask, size)
img_path = new_image_path + str(name) + ".jpg"
mask_path = new_mask_path + str(name) + ".jpg"
tmp_path = [img_path, mask_path]
save_image(image, mask, tmp_path)
## Training images and masks
for idx, p in tqdm(enumerate(train_images), total=len(train_images)):
## Path
name = p.split("/")[-1].split(".")[0]
image_path = train_images[idx]
mask_path = train_masks[idx]
if os.path.exists(image_path) and os.path.exists(image_path):
image = read_image(image_path)
mask = read_image(mask_path, grayscale=True)
## Augment
image1, mask1 = center_crop(image, mask, crop_size, size)
image2, mask2 = random_crop(image, mask, crop_size, size)
image3, mask3 = horizontal_flip(image, mask, size)
image4, mask4 = vertical_flip(image, mask, size)
image5, mask5 = scale_augmentation(image, mask, (512, 768), crop_size, size)
image6, mask6 = random_rotation(image, mask, size)
image7, mask7 = cutout(image, mask, 256)
## Extra Cropping
image8, mask8 = random_crop(image, mask, crop_size, size)
image9, mask9 = random_crop(image, mask, crop_size, size)
## Extra Scale Augmentation
image10, mask10 = scale_augmentation(image, mask, (540, 820), crop_size, size)
image11, mask11 = scale_augmentation(image, mask, (720, 1024), crop_size, size)
## Extra Rotation
image12, mask12 = random_rotation(image, mask, size)
image13, mask13 = random_rotation(image, mask, size)
## Brightness
image14, mask14 = brightness_augment(image, mask, factor=0.3)
image15, mask15 = brightness_augment(image, mask, factor=0.6)
image16, mask16 = brightness_augment(image, mask, factor=0.9)
## More Rotation
image17, mask17 = random_rotation(image, mask, size)
image18, mask18 = random_rotation(image, mask, size)
## More Random Crop
image19, mask19 = random_crop(image, mask, crop_size, size)
image20, mask20 = random_crop(image, mask, crop_size, size)
## More Cutout
image21, mask21 = cutout(image, mask, 256)
image22, mask22 = cutout(image, mask, 256)
## Grayscale
image23, mask23 = rgb_to_grayscale(image, mask)
image24, mask24 = rgb_to_grayscale(image1, mask1)
image25, mask25 = rgb_to_grayscale(image2, mask2)
image26, mask26 = rgb_to_grayscale(image3, mask3)
image27, mask27 = rgb_to_grayscale(image4, mask4)
image28, mask28 = rgb_to_grayscale(image5, mask5)
image29, mask29 = rgb_to_grayscale(image15, mask15)
image30, mask30 = rgb_to_grayscale(image16, mask16)
## Original image and mask
image = resize(image, size)
mask = resize(mask, size)
## All images and masks
all_images = [image, image1, image2, image3, image4, image5, image6, image7,
image8, image9, image10, image11, image12, image13, image14, image15, image16,
image17, image18, image19, image20, image21, image22,
image23,image24, image25, image26, image27, image28, image29, image30
]
all_masks = [mask, mask1, mask2, mask3, mask4, mask5, mask6, mask7, mask8,
mask9, mask10, mask11, mask12, mask13, mask14, mask15, mask16,
mask17, mask18, mask19, mask20, mask21, mask22,
mask23, mask24, mask25, mask26, mask27, mask28, mask29, mask30
]
## Save the images and masks
new_image_path = os.path.join(new_full_path, "train", "images/")
new_mask_path = os.path.join(new_full_path, "train", "masks/")
for j in range(len(all_images)):
img_path = new_image_path + str(name) + "_" + str(j) + ".jpg"
msk_path = new_mask_path + str(name) + "_" + str(j) + ".jpg"
img = all_images[j]
msk = all_masks[j]
path = [img_path, msk_path]
save_image(img, msk, path)