-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathresunet++_pytorch.py
198 lines (156 loc) · 5.45 KB
/
resunet++_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torch
import torch.nn as nn
class Squeeze_Excitation(nn.Module):
def __init__(self, channel, r=8):
super().__init__()
self.pool = nn.AdaptiveAvgPool2d(1)
self.net = nn.Sequential(
nn.Linear(channel, channel // r, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // r, channel, bias=False),
nn.Sigmoid(),
)
def forward(self, inputs):
b, c, _, _ = inputs.shape
x = self.pool(inputs).view(b, c)
x = self.net(x).view(b, c, 1, 1)
x = inputs * x
return x
class Stem_Block(nn.Module):
def __init__(self, in_c, out_c, stride):
super().__init__()
self.c1 = nn.Sequential(
nn.Conv2d(in_c, out_c, kernel_size=3, stride=stride, padding=1),
nn.BatchNorm2d(out_c),
nn.ReLU(),
nn.Conv2d(out_c, out_c, kernel_size=3, padding=1),
)
self.c2 = nn.Sequential(
nn.Conv2d(in_c, out_c, kernel_size=1, stride=stride, padding=0),
nn.BatchNorm2d(out_c),
)
self.attn = Squeeze_Excitation(out_c)
def forward(self, inputs):
x = self.c1(inputs)
s = self.c2(inputs)
y = self.attn(x + s)
return y
class ResNet_Block(nn.Module):
def __init__(self, in_c, out_c, stride):
super().__init__()
self.c1 = nn.Sequential(
nn.BatchNorm2d(in_c),
nn.ReLU(),
nn.Conv2d(in_c, out_c, kernel_size=3, padding=1, stride=stride),
nn.BatchNorm2d(out_c),
nn.ReLU(),
nn.Conv2d(out_c, out_c, kernel_size=3, padding=1)
)
self.c2 = nn.Sequential(
nn.Conv2d(in_c, out_c, kernel_size=1, stride=stride, padding=0),
nn.BatchNorm2d(out_c),
)
self.attn = Squeeze_Excitation(out_c)
def forward(self, inputs):
x = self.c1(inputs)
s = self.c2(inputs)
y = self.attn(x + s)
return y
class ASPP(nn.Module):
def __init__(self, in_c, out_c, rate=[1, 6, 12, 18]):
super().__init__()
self.c1 = nn.Sequential(
nn.Conv2d(in_c, out_c, kernel_size=3, dilation=rate[0], padding=rate[0]),
nn.BatchNorm2d(out_c)
)
self.c2 = nn.Sequential(
nn.Conv2d(in_c, out_c, kernel_size=3, dilation=rate[1], padding=rate[1]),
nn.BatchNorm2d(out_c)
)
self.c3 = nn.Sequential(
nn.Conv2d(in_c, out_c, kernel_size=3, dilation=rate[2], padding=rate[2]),
nn.BatchNorm2d(out_c)
)
self.c4 = nn.Sequential(
nn.Conv2d(in_c, out_c, kernel_size=3, dilation=rate[3], padding=rate[3]),
nn.BatchNorm2d(out_c)
)
self.c5 = nn.Conv2d(out_c, out_c, kernel_size=1, padding=0)
def forward(self, inputs):
x1 = self.c1(inputs)
x2 = self.c2(inputs)
x3 = self.c3(inputs)
x4 = self.c4(inputs)
x = x1 + x2 + x3 + x4
y = self.c5(x)
return y
class Attention_Block(nn.Module):
def __init__(self, in_c):
super().__init__()
out_c = in_c[1]
self.g_conv = nn.Sequential(
nn.BatchNorm2d(in_c[0]),
nn.ReLU(),
nn.Conv2d(in_c[0], out_c, kernel_size=3, padding=1),
nn.MaxPool2d((2, 2))
)
self.x_conv = nn.Sequential(
nn.BatchNorm2d(in_c[1]),
nn.ReLU(),
nn.Conv2d(in_c[1], out_c, kernel_size=3, padding=1),
)
self.gc_conv = nn.Sequential(
nn.BatchNorm2d(in_c[1]),
nn.ReLU(),
nn.Conv2d(out_c, out_c, kernel_size=3, padding=1),
)
def forward(self, g, x):
g_pool = self.g_conv(g)
x_conv = self.x_conv(x)
gc_sum = g_pool + x_conv
gc_conv = self.gc_conv(gc_sum)
y = gc_conv * x
return y
class Decoder_Block(nn.Module):
def __init__(self, in_c, out_c):
super().__init__()
self.a1 = Attention_Block(in_c)
self.up = nn.Upsample(scale_factor=2, mode="nearest")
self.r1 = ResNet_Block(in_c[0]+in_c[1], out_c, stride=1)
def forward(self, g, x):
d = self.a1(g, x)
d = self.up(d)
d = torch.cat([d, g], axis=1)
d = self.r1(d)
return d
class build_resunetplusplus(nn.Module):
def __init__(self):
super().__init__()
self.c1 = Stem_Block(3, 16, stride=1)
self.c2 = ResNet_Block(16, 32, stride=2)
self.c3 = ResNet_Block(32, 64, stride=2)
self.c4 = ResNet_Block(64, 128, stride=2)
self.b1 = ASPP(128, 256)
self.d1 = Decoder_Block([64, 256], 128)
self.d2 = Decoder_Block([32, 128], 64)
self.d3 = Decoder_Block([16, 64], 32)
self.aspp = ASPP(32, 16)
self.output = nn.Conv2d(16, 1, kernel_size=1, padding=0)
def forward(self, inputs):
c1 = self.c1(inputs)
c2 = self.c2(c1)
c3 = self.c3(c2)
c4 = self.c4(c3)
b1 = self.b1(c4)
d1 = self.d1(c3, b1)
d2 = self.d2(c2, d1)
d3 = self.d3(c1, d2)
output = self.aspp(d3)
output = self.output(output)
return output
if __name__ == "__main__":
model = build_resunetplusplus()
from ptflops import get_model_complexity_info
flops, params = get_model_complexity_info(model, input_res=(3, 256, 256), as_strings=True, print_per_layer_stat=False)
print(' - Flops: ' + flops)
print(' - Params: ' + params)