forked from hmartiro/kalman-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkalman.hpp
91 lines (72 loc) · 1.78 KB
/
kalman.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
/**
* Kalman filter implementation using Eigen. Based on the following
* introductory paper:
*
* http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
*
* @author: Hayk Martirosyan
* @date: 2014.11.15
*/
#include <Eigen/Dense>
#pragma once
class KalmanFilter {
public:
/**
* Create a Kalman filter with the specified matrices.
* A - System dynamics matrix
* C - Output matrix
* Q - Process noise covariance
* R - Measurement noise covariance
* P - Estimate error covariance
*/
KalmanFilter(
double dt,
const Eigen::MatrixXd& A,
const Eigen::MatrixXd& C,
const Eigen::MatrixXd& Q,
const Eigen::MatrixXd& R,
const Eigen::MatrixXd& P
);
/**
* Create a blank estimator.
*/
KalmanFilter();
/**
* Initialize the filter with initial states as zero.
*/
void init();
/**
* Initialize the filter with a guess for initial states.
*/
void init(double t0, const Eigen::VectorXd& x0);
/**
* Update the estimated state based on measured values. The
* time step is assumed to remain constant.
*/
void update(const Eigen::VectorXd& y);
/**
* Update the estimated state based on measured values,
* using the given time step and dynamics matrix.
*/
void update(const Eigen::VectorXd& y, double dt, const Eigen::MatrixXd A);
/**
* Return the current state and time.
*/
Eigen::VectorXd state() { return x_hat; };
double time() { return t; };
private:
// Matrices for computation
Eigen::MatrixXd A, C, Q, R, P, K, P0;
// System dimensions
int m, n;
// Initial and current time
double t0, t;
// Discrete time step
double dt;
// Is the filter initialized?
bool initialized;
// n-size identity
Eigen::MatrixXd I;
// Estimated states
Eigen::VectorXd x_hat, x_hat_new;
};