-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathranges_more.d
428 lines (321 loc) · 13.7 KB
/
ranges_more.d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
Ddoc
$(DERS_BOLUMU $(IX range) More Ranges)
$(P
We used mostly $(C int) ranges in the previous chapter. In practice, containers, algorithms, and ranges are almost always implemented as templates. The $(C print()) example in that chapter was a template as well:
)
---
void print$(HILITE (T))(T range) {
// ...
}
---
$(P
What lacks from the implementation of $(C print()) is that even though it requires $(C T) to be a kind of $(C InputRange), it does not formalize that requirement with a template constraint. (We have seen template constraints in $(LINK2 /ders/d.en/templates_more.html, the More Templates chapter).)
)
$(P
The $(C std.range) module contains templates that are useful both in template constraints and in $(C static if) statements.
)
$(H5 Range kind templates)
$(P
The group of templates with names starting with $(C is) determine whether a type satisfies the requirements of a certain kind of range. For example, $(C isInputRange!T) answers the question "is $(C T) an $(C InputRange)?" The following templates are for determining whether a type is of a specific general range kind:
)
$(UL
$(LI $(IX isInputRange) $(C isInputRange))
$(LI $(IX isForwardRange) $(C isForwardRange))
$(LI $(IX isBidirectionalRange) $(C isBidirectionalRange))
$(LI $(IX isRandomAccessRange) $(C isRandomAccessRange))
$(LI $(IX isOutputRange) $(C isOutputRange))
)
$(P
Accordingly, the template constraint of $(C print()) can use $(C isInputRange):
)
---
void print(T)(T range)
if ($(HILITE isInputRange!T)) {
// ...
}
---
$(P
Unlike the others, $(C isOutputRange) takes two template parameters: The first one is a range type and the second one is an element type. It returns $(C true) if that range type allows outputting that element type. For example, the following constraint is for requiring that the range must be an $(C OutputRange) that accepts $(C double) elements:
)
---
void foo(T)(T range)
if (isOutputRange!($(HILITE T, double))) {
// ...
}
---
$(P
When used in conjunction with $(C static if), these constraints can determine the capabilities of user-defined ranges as well. For example, when a dependent range of a user-defined range is a $(C ForwardRange), the user-defined range can take advantage of that fact and can provide the $(C save()) function as well.
)
$(P
Let's see this on a range that produces the negatives of the elements of an existing range (more accurately, the $(I numeric complements) of the elements). Let's start with just the $(C InputRange) functions:
)
---
struct Negative(T)
if (isInputRange!T) {
T range;
@property bool empty() {
return range.empty;
}
@property auto front() {
return $(HILITE -range.front);
}
void popFront() {
range.popFront();
}
}
---
$(P
$(I $(B Note:) As we will see below, the return type of $(C front) can be specified as $(C ElementType!T) as well.)
)
$(P
The only functionality of this range is in the $(C front) function where it produces the negative of the front element of the original range.
)
$(P
As usual, the following is the convenience function that goes with that range:
)
---
Negative!T negative(T)(T range) {
return Negative!T(range);
}
---
$(P
This range is ready to be used with e.g. $(C FibonacciSeries) that was defined in the previous chapter:
)
---
struct FibonacciSeries {
int current = 0;
int next = 1;
enum empty = false;
@property int front() const {
return current;
}
void popFront() {
const nextNext = current + next;
current = next;
next = nextNext;
}
@property FibonacciSeries save() const {
return this;
}
}
// ...
writeln(FibonacciSeries().take(5).$(HILITE negative));
---
$(P
The output contains the negatives of the first five elements of the series:
)
$(SHELL
[0, -1, -1, -2, -3]
)
$(P
Naturally, being just an $(C InputRange), $(C Negative) cannot be used with algorithms like $(C cycle()) that require a $(C ForwardRange):
)
---
writeln(FibonacciSeries()
.take(5)
.negative
.cycle $(DERLEME_HATASI)
.take(10));
---
$(P
However, when the original range is already a $(C ForwardRange), there is no reason for $(C Negative) not to provide the $(C save()) function as well. This condition can be determined by a $(C static if) statement and $(C save()) can be provided if the original range is a $(C ForwardRange). In this case it is as trivial as returning a new $(C Negative) object that is constructed by a copy of the original range:
)
---
struct Negative(T)
if (isInputRange!T) {
// ...
$(HILITE static if) (isForwardRange!T) {
@property Negative save() {
return Negative(range.save);
}
}
}
---
$(P
The addition of the new $(C save()) function makes $(C Negative!FibonacciSeries) a $(C ForwardRange) as well and the $(C cycle()) call can now be compiled:
)
---
writeln(FibonacciSeries()
.take(5)
.negative
.cycle // ← now compiles
.take(10));
---
$(P
The output of the entire expression can be described as $(I take the first five elements of the Fibonacci series, take their negatives, cycle those indefinitely, and take the first ten of those elements):
)
$(SHELL
[0, -1, -1, -2, -3, 0, -1, -1, -2, -3]
)
$(P
With the same approach, $(C Negative) can be made a $(C BidirectionalRange) and a $(C RandomAccessRange) if the original range supports those functionalities:
)
---
struct Negative(T)
if (isInputRange!T) {
// ...
static if (isBidirectionalRange!T) {
@property auto back() {
return -range.back;
}
void popBack() {
range.popBack();
}
}
static if (isRandomAccessRange!T) {
auto opIndex(size_t index) {
return -range[index];
}
}
}
---
$(P
For example, when it is used with a slice, the negative elements can be accessed by the $(C []) operator:
)
---
auto d = [ 1.5, 2.75 ];
auto n = d.negative;
writeln(n$(HILITE [1]));
---
$(P
The output:
)
$(SHELL
-2.75
)
$(H5 $(IX ElementType) $(IX ElementEncodingType) $(C ElementType) and $(C ElementEncodingType))
$(P
$(C ElementType) provides the types of the elements of the range.
)
$(P
For example, the following template constraint includes a requirement that is about the element type of the first range:
)
---
void foo(I1, I2, O)(I1 input1, I2 input2, O output)
if (isInputRange!I1 &&
isForwardRange!I2 &&
isOutputRange!(O, $(HILITE ElementType!I1))) {
// ...
}
---
$(P
The previous constraint can be described as $(I if $(C I1) is an $(C InputRange) and $(C I2) is a $(C ForwardRange) and $(C O) is an $(C OutputRange) that accepts the element type of $(C I1)).
)
$(P
$(IX dchar, string range) Since strings are always ranges of Unicode characters, regardless of their actual character types, they are always ranges of $(C dchar), which means that even $(C ElementType!string) and $(C ElementType!wstring) are $(C dchar). For that reason, when needed in a template, the actual UTF encoding type of a string range can be obtained by $(C ElementEncodingType).
)
$(H5 More range templates)
$(P
The $(C std.range) module has many more range templates that can be used with D's other compile-time features. The following is a sampling:
)
$(UL
$(LI $(IX isInfinite) $(C isInfinite): Whether the range is infinite)
$(LI $(IX hasLength) $(C hasLength): Whether the range has a $(C length) property)
$(LI $(IX hasSlicing) $(C hasSlicing): Whether the range supports slicing i.e. with $(C a[x..y]))
$(LI $(IX hasAssignableElements) $(C hasAssignableElements): Whether the return type of $(C front) is assignable)
$(LI $(IX hasSwappableElements) $(C hasSwappableElements): Whether the elements of the range are swappable e.g. with $(C std.algorithm.swap))
$(LI $(IX hasMobileElements) $(IX move, std.algorithm) $(C hasMobileElements): Whether the elements of the range are movable e.g. with $(C std.algorithm.move)
$(P
$(IX moveFront) $(IX moveBack) $(IX moveAt) This implies that the range has $(C moveFront()), $(C moveBack()), or $(C moveAt()), depending on the actual kind of the range. Since moving elements is usually faster than copying them, depending on the result of $(C hasMobileElements) a range can provide faster operations by calling $(C move()).
)
)
$(LI $(IX hasLvalueElements) $(IX lvalue) $(C hasLvalueElements): Whether the elements of the range are $(I lvalues) (roughly meaning that the elements are not copies of actual elements nor are temporary objects that are created on the fly)
$(P
For example, $(C hasLvalueElements!FibonacciSeries) is $(C false) because the elements of $(C FibonacciSeries) do not exist as themselves; rather, they are copies of the member $(C current) that is returned by $(C front). Similarly, $(C hasLvalueElements!(Negative!(int[]))) is $(C false) because although the $(C int) slice does have actual elements, the range that is represented by $(C Negative) does not provide access to those elements; rather, it returns copies that have the negative signs of the elements of the actual slice. Conversely, $(C hasLvalueElements!(int[])) is $(C true) because a slice provides access to actual elements of an array.
)
)
)
$(P
The following example takes advantage of $(C isInfinite) to provide $(C empty) as an $(C enum) when the original range is infinite, making it known at compile time that $(C Negative!T) is infinite as well:
)
---
struct Negative(T)
if (isInputRange!T) {
// ...
static if (isInfinite!T) {
// Negative!T is infinite as well
enum empty = false;
} else {
@property bool empty() {
return range.empty;
}
}
// ...
}
static assert( isInfinite!(Negative!FibonacciSeries));
static assert(!isInfinite!(int[]));
---
$(H5 $(IX polymorphism, run-time) $(IX inputRangeObject) $(IX outputRangeObject) Run-time polymorphism with $(C inputRangeObject()) and $(C outputRangeObject()))
$(P
Being implemented mostly as templates, ranges exhibit $(I compile-time polymorphism), which we have been taking advantage of in the examples of this chapter and previous chapters. ($(I For differences between compile-time polymorphism and run-time polymorphism, see the "Compile-time polymorphism" section in $(LINK2 /ders/d.en/templates_more.html, the More Templates chapter).))
)
$(P
Compile-time polymorphism has to deal with the fact that every instantiation of a template is a different type. For example, the return type of the $(C take()) template is directly related to the original range:
)
---
writeln(typeof([11, 22].negative.take(1)).stringof);
writeln(typeof(FibonacciSeries().take(1)).stringof);
---
$(P
The output:
)
$(SHELL
Take!(Negative!(int[]))
Take!(FibonacciSeries)
)
$(P
A natural consequence of this fact is that different range types cannot be assigned to each other. The following is an example of this incompatibility between two $(C InputRange) ranges:
)
---
auto range = [11, 22].negative;
// ... at a later point ...
range = FibonacciSeries(); $(DERLEME_HATASI)
---
$(P
As expected, the compilation error indicates that $(C FibonacciSeries) and $(C Negative!(int[])) are not compatible:
)
$(SHELL
Error: cannot implicitly convert expression (FibonacciSeries(0, 1))
of type $(HILITE FibonacciSeries) to $(HILITE Negative!(int[]))
)
$(P
However, although the actual types of the ranges are different, since they both are $(I ranges of $(C int)), this incompatibility can be seen as an unnecessary limitation. From the usage point of view, since both ranges simply provide $(C int) elements, the actual mechanism that produces those elements should not be important.
)
$(P
Phobos helps with this issue by $(C inputRangeObject()) and $(C outputRangeObject()). $(C inputRangeObject()) allows presenting ranges as $(I a specific kind of range of specific types of elements). With its help, a range can be used e.g. as $(I an $(C InputRange) of $(C int) elements), regardless of the actual type of the range.
)
$(P
$(C inputRangeObject()) is flexible enough to support all of the non-output ranges: $(C InputRange), $(C ForwardRange), $(C BidirectionalRange), and $(C RandomAccessRange). Because of that flexibility, the object that it returns cannot be defined by $(C auto). The exact kind of range that is required must be specified explicitly:
)
---
// Meaning "InputRange of ints":
$(HILITE InputRange!int) range = [11, 22].negative.$(HILITE inputRangeObject);
// ... at a later point ...
// The following assignment now compiles
range = FibonacciSeries().$(HILITE inputRangeObject);
---
$(P
As another example, when the range needs to be used as $(I a $(C ForwardRange) of $(C int) elements), its type must be specified explicitly as $(C ForwardRange!int):
)
---
$(HILITE ForwardRange!int) range = [11, 22].negative.inputRangeObject;
auto copy = range.$(HILITE save);
range = FibonacciSeries().inputRangeObject;
writeln(range.$(HILITE save).take(10));
---
$(P
The example calls $(C save()) just to prove that the ranges can indeed be used as $(C ForwardRange) ranges.
)
$(P
Similarly, $(C outputRangeObject()) works with $(C OutputRange) ranges and allows their use as $(I an $(C OutputRange) that accepts specific types of elements).
)
$(H5 Summary)
$(UL
$(LI The $(C std.range) module contains many useful range templates.)
$(LI Some of those templates allow templates be more capable depending on the capabilities of original ranges.)
$(LI $(C inputRangeObject()) and $(C outputRangeObject()) provide run-time polymorphism, allowing using different types of ranges as $(I specific kinds of ranges of specific types of elements).)
)
macros:
SUBTITLE=More Ranges
DESCRIPTION=Many useful range templates of the std.range module.
KEYWORDS=d programming language tutorial book ranges