-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_intelligence.py
56 lines (43 loc) · 1.96 KB
/
train_intelligence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.dummy import DummyRegressor
import pandas as pd
import pickle
import text_treatment
mass_data_reviews = pd.read_csv('imdb-reviews-pt-br.csv')
# pd.set_option('expand_frame_repr', False)
# pd.set_option('display.max_columns', 999)
classification = mass_data_reviews['sentiment'].replace(['neg', 'pos'], [0, 1])
mass_data_reviews['classification'] = classification
processed_phrase = list()
for opinion in mass_data_reviews.text_pt:
processed_phrase.append(text_treatment.treat_all(opinion))
mass_data_reviews["treated_text"] = processed_phrase
def train_intelligence(dataframe, text_column, classification_column):
vectorizer = TfidfVectorizer(lowercase=False)
bag_of_words = vectorizer.fit_transform(dataframe[text_column])
train, test, class_train, class_test = train_test_split(bag_of_words, dataframe[classification_column],
random_state=42, test_size=0.25)
logistic_regression = LogisticRegression()
logistic_regression.fit(train, class_train)
pesos = pd.DataFrame(
logistic_regression.coef_[0].T,
index=vectorizer.get_feature_names()
)
print(pesos.nlargest(10, 0))
print(pesos.nsmallest(10, 0))
filename = 'anton_brain.sav'
pickle.dump(logistic_regression, open(filename, 'wb'))
filename = 'anton_vectorizer.sav'
pickle.dump(vectorizer, open(filename, 'wb'))
###### baseline ######
baseline = DummyRegressor(strategy="mean")
baseline.fit(train, class_train)
print('Baseline Accuracy: ')
print(round(baseline.predict(class_test)[0] * 100, 2))
###### baseline ######
print('Algorithm Accuracy:')
print(round(logistic_regression.score(test, class_test) * 100, 2))
return
train_intelligence(mass_data_reviews, 'treated_text', 'classification')