Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

generate csv files #2

Open
GeoTuxMan opened this issue Dec 15, 2021 · 0 comments
Open

generate csv files #2

GeoTuxMan opened this issue Dec 15, 2021 · 0 comments

Comments

@GeoTuxMan
Copy link

GeoTuxMan commented Dec 15, 2021

Hello ,

I try to generate the two csv files, with this script:
`
packages<-function(x){
x<-as.character(match.call()[[2]])
if (!require(x,character.only=TRUE)){
install.packages(pkgs=x,repos="http://cran.r-project.org")
require(x,character.only=TRUE)
}
}

packages(knitr)
packages(sf)
packages(rmarkdown)
packages(rworldxtra)
packages(tidyverse)
packages(shiny)
packages(rgeos)
library("readxl")
select <- dplyr::select

source("functions_needed.R")

phy_sp <- read_excel("data/derived_data/lucru_phy_sp.xlsx")

orderedSpeciesList <- phy_sp %>% ungroup() %>%
group_by(scientificnameaccepted) %>%
summarise(n = n()) %>% arrange(-n) %>% head(100) %>% unlist() %>% unname()

commonSpecies <- phy_sp[phy_sp$scientificnameaccepted %in% orderedSpeciesList,]

for (ii in 1:length(unique(commonSpecies$scientificnameaccepted))){ #length(unique(phy$scientificName))

targetSpecies <- unique(commonSpecies$scientificnameaccepted)[ii] # Species to work with
begin = 1956 # Range of years for plots
end = 1960

if(length(commonSpecies$occurrence) > 0){

selectedDatasets <- commonSpecies %>%
ungroup() %>%
dplyr::filter(scientificnameaccepted == targetSpecies) %>%
distinct(abbr) %>% unlist() %>% unname()

phy_c <- commonSpecies %>%
dplyr::filter(year %in% begin:end) %>%
dplyr::filter(abbr %in% selectedDatasets) %>%
group_by(abbr, year) %>%
tidyr::complete(nesting(aphiaid, scientificnameaccepted), # these will be completed, with their occurrence
nesting(date, decimallongitude, decimallatitude, season), # Combinations of these parameters are to be found
fill = list(occurrence = 0)) %>%
ungroup() %>%
unite(date_decimallongitude_decimallatitude, date, decimallongitude, decimallatitude, remove = FALSE) %>%
filter(scientificnameaccepted == targetSpecies) %>%
ungroup()

dup_zero <- phy_c %>%
arrange(aphiaid, date, decimallongitude, decimallatitude, occurrence, season) %>%
select(-datasetID) %>%
duplicated %>% which

dbs_zero <- phy_c %>%
arrange(aphiaid, date, decimallongitude, decimallatitude, occurrence, season) %>%
ungroup() %>%
slice(sort(c(dup_zero, dup_zero-1)))

if(length(dbs_zero$occurrence) > 0){
write.csv(dbs_zero,
paste0("product/dupl/Dupl_",
targetSpecies, " ",
begin, "-", end, ".csv"),
row.names = FALSE)
}

phy_c <- phy_c %>%
distinct(aphiaid, scientificnameaccepted, date, decimallongitude, decimallatitude, year, season, occurrence, .keep_all = TRUE) %>%
select(datasetID, abbr, year, aphiaid, scientificnameaccepted,date, decimallongitude, decimallatitude, season, eventid, mrgid, month, occurrence)

write.csv(phy_c, paste0("product/csv_files/", targetSpecies, "-", begin, "-", end, ".csv"), row.names = FALSE)
} else next()
}

rm(phy_c)
rm(phy_sp)

phy_gen <- read_excel("data/derived_data/lucru_phy_gen.xlsx")

orderedGenusList <- phy_gen %>% ungroup() %>%
group_by(genus) %>%
summarise(n = n()) %>% arrange(-n) %>% head(100) %>% unlist() %>% unname()

commonGenus <- phy_gen[phy_gen$genus %in% orderedGenusList,]

for (ii in 1:length(unique(commonGenus$genus))){ #length(unique(phy_gen$genus))

targetGen <- unique(commonGenus$genus)[ii] # Species to work with
begin = 1956 # Range of years for plots
end = 1960

if(length(commonGenus$occurrence) > 0){

selectedDatasets <- commonGenus %>%
ungroup() %>%
dplyr::filter(genus == targetGen) %>%
distinct(abbr) %>% unlist() %>% unname()

phy_c_g <- commonGenus %>%
dplyr::filter(year %in% begin:end) %>%
dplyr::filter(abbr %in% selectedDatasets) %>%
group_by(abbr, year) %>%
tidyr::complete(nesting(genus), # these will be completed, with their occurrence
nesting(date, decimallongitude, decimallatitude, season), # Combinations of these parameters are to be found
fill = list(occurrence = 0)) %>%
ungroup() %>%
unite(date_decimallongitude_decimallatitude, date, decimallongitude, decimallatitude, remove = FALSE) %>%
filter(genus == targetGen)

dup_zero_g <- phy_c_g %>%
arrange(genus, date, decimallongitude, decimallatitude, occurrence, season) %>%
select(-datasetID) %>%
duplicated %>% which

dbs_zero_g <- phy_c_g %>%
arrange(genus, date, decimallongitude, decimallatitude, occurrence, season) %>%
ungroup() %>%
slice(sort(c(dup_zero_g, dup_zero_g-1)))

if(length(dbs_zero_g$occurrence) > 0){

write.csv(dbs_zero_g,
paste0("product/dupl/Dupl_",
params$targetGen, " ",
params$begin, "-", params$end, ".csv"),
row.names = FALSE)
}

phy_c_g <- phy_c_g %>%
distinct(genus, date, decimallongitude, decimallatitude, year, season, occurrence, .keep_all = TRUE) %>%
select(datasetID, abbr, year, aphiaid, scientificnameaccepted,date, decimallongitude, decimallatitude, season, eventid, mrgid, month, occurrence)

write.csv(phy_c_g, paste0("product/csv_files/", targetGen, "-", begin, "-", end, ".csv"), row.names = FALSE)

} else next()

}`

But I got two errors like this:

Error: distinct() must use existing variables.
x abbr not found in .data.

What does abbr represent ? I attach the excel files that I used in the above script.

Cheers !
George
lucru_phy_gen.xlsx
lucru_phy_sp.xlsx

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant