-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathpredict.py
49 lines (35 loc) · 1.37 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
import numpy as np
import os
from dlt.basic.predict_on_large_tile import apply_net_to_large_data
from dlt.basic.unet import UNet
from sentinel_dataset import Dataset
#Configuration
network_path = 'saved_models/atmospheric_correction_b02.pt'
target_is_classes = False #Put to false for regression problems
n_output_channels = 1
model_name = network_path.split('/')[-1].replace('.pt','')
data_bands = ['B02', 'B03', 'B04', 'B08', 'B05', 'B06', 'B07', 'B8A', 'B11', 'B12']
pred_win_size = [1024, 1024]
window_overlap = [50, 50]
#Load model with weights
net = UNet(n_output_channels, len(data_bands))
weights = torch.load(network_path, map_location=lambda storage, loc: storage)
net.load_state_dict(weights)
#Move model to GPU to enable GPU-computing
net.cuda()
#Put model in evaluation mode
net.eval()
#Load test-tile
dataset = Dataset( 'data/T32TMM/', band_identifiers=data_bands )
# Loop through tiles
for tile in dataset.tiles:
print('Predicting for tile', tile.tile_id, tile.file_name)
#Get data
data = tile.get_data(data_bands)
data = [np.expand_dims(d,-1) for d in data]
data = np.concatenate(data,-1)
#Run through network
output = apply_net_to_large_data(data, net, pred_win_size, window_overlap, apply_classifier=target_is_classes)
#Save output as GeoTiff
tile.export_prediction_to_tif( tile.file_name +'_' + model_name +'.tif', output)