forked from zhampel/clusterGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
366 lines (292 loc) · 13.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
from __future__ import print_function
try:
import argparse
import os
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
from torch.autograd import Variable
from torch.autograd import grad as torch_grad
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import datasets
import torchvision.transforms as transforms
from torchvision.utils import save_image
from itertools import chain as ichain
from clusgan.definitions import DATASETS_DIR, RUNS_DIR
from clusgan.models import Generator_CNN, Encoder_CNN, Discriminator_CNN
from clusgan.utils import save_model, calc_gradient_penalty, sample_z, cross_entropy
from clusgan.datasets import get_dataloader, dataset_list
from clusgan.plots import plot_train_loss
except ImportError as e:
print(e)
raise ImportError
def main():
global args
parser = argparse.ArgumentParser(description="Convolutional NN Training Script")
parser.add_argument("-r", "--run_name", dest="run_name", default='clusgan', help="Name of training run")
parser.add_argument("-n", "--n_epochs", dest="n_epochs", default=200, type=int, help="Number of epochs")
parser.add_argument("-b", "--batch_size", dest="batch_size", default=64, type=int, help="Batch size")
parser.add_argument("-s", "--dataset_name", dest="dataset_name", default='mnist', choices=dataset_list, help="Dataset name")
parser.add_argument("-w", "--wass_metric", dest="wass_metric", action='store_true', help="Flag for Wasserstein metric")
parser.add_argument("-g", "-–gpu", dest="gpu", default=0, type=int, help="GPU id to use")
parser.add_argument("-k", "-–num_workers", dest="num_workers", default=1, type=int, help="Number of dataset workers")
args = parser.parse_args()
run_name = args.run_name
dataset_name = args.dataset_name
device_id = args.gpu
num_workers = args.num_workers
# Training details
n_epochs = args.n_epochs
batch_size = args.batch_size
test_batch_size = 5000
lr = 1e-4
b1 = 0.5
b2 = 0.9 #99
decay = 2.5*1e-5
n_skip_iter = 1 #5
img_size = 28
channels = 1
# Latent space info
latent_dim = 30
n_c = 10
betan = 10
betac = 10
# Wasserstein metric flag
# Wasserstein metric flag
wass_metric = args.wass_metric
mtype = 'van'
if (wass_metric):
mtype = 'wass'
# Make directory structure for this run
sep_und = '_'
run_name_comps = ['%iepoch'%n_epochs, 'z%s'%str(latent_dim), mtype, 'bs%i'%batch_size, run_name]
run_name = sep_und.join(run_name_comps)
run_dir = os.path.join(RUNS_DIR, dataset_name, run_name)
data_dir = os.path.join(DATASETS_DIR, dataset_name)
imgs_dir = os.path.join(run_dir, 'images')
models_dir = os.path.join(run_dir, 'models')
os.makedirs(data_dir, exist_ok=True)
os.makedirs(run_dir, exist_ok=True)
os.makedirs(imgs_dir, exist_ok=True)
os.makedirs(models_dir, exist_ok=True)
print('\nResults to be saved in directory %s\n'%(run_dir))
x_shape = (channels, img_size, img_size)
cuda = True if torch.cuda.is_available() else False
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
torch.cuda.set_device(device_id)
# Loss function
bce_loss = torch.nn.BCELoss()
xe_loss = torch.nn.CrossEntropyLoss()
mse_loss = torch.nn.MSELoss()
# Initialize generator and discriminator
generator = Generator_CNN(latent_dim, n_c, x_shape)
encoder = Encoder_CNN(latent_dim, n_c)
discriminator = Discriminator_CNN(wass_metric=wass_metric)
if cuda:
generator.cuda()
encoder.cuda()
discriminator.cuda()
bce_loss.cuda()
xe_loss.cuda()
mse_loss.cuda()
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
# Configure training data loader
dataloader = get_dataloader(dataset_name=dataset_name,
data_dir=data_dir,
batch_size=batch_size,
num_workers=num_workers)
# Test data loader
testdata = get_dataloader(dataset_name=dataset_name, data_dir=data_dir, batch_size=test_batch_size, train_set=False)
test_imgs, test_labels = next(iter(testdata))
test_imgs = Variable(test_imgs.type(Tensor))
ge_chain = ichain(generator.parameters(),
encoder.parameters())
optimizer_GE = torch.optim.Adam(ge_chain, lr=lr, betas=(b1, b2), weight_decay=decay)
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=lr, betas=(b1, b2))
#optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=lr, betas=(b1, b2), weight_decay=decay)
# ----------
# Training
# ----------
ge_l = []
d_l = []
c_zn = []
c_zc = []
c_i = []
# Training loop
print('\nBegin training session with %i epochs...\n'%(n_epochs))
for epoch in range(n_epochs):
for i, (imgs, itruth_label) in enumerate(dataloader):
# Ensure generator/encoder are trainable
generator.train()
encoder.train()
# Zero gradients for models
generator.zero_grad()
encoder.zero_grad()
discriminator.zero_grad()
# Configure input
real_imgs = Variable(imgs.type(Tensor))
# ---------------------------
# Train Generator + Encoder
# ---------------------------
optimizer_GE.zero_grad()
# Sample random latent variables
zn, zc, zc_idx = sample_z(shape=imgs.shape[0],
latent_dim=latent_dim,
n_c=n_c)
# Generate a batch of images
gen_imgs = generator(zn, zc)
# Discriminator output from real and generated samples
D_gen = discriminator(gen_imgs)
D_real = discriminator(real_imgs)
# Step for Generator & Encoder, n_skip_iter times less than for discriminator
if (i % n_skip_iter == 0):
# Encode the generated images
enc_gen_zn, enc_gen_zc, enc_gen_zc_logits = encoder(gen_imgs)
# Calculate losses for z_n, z_c
zn_loss = mse_loss(enc_gen_zn, zn)
zc_loss = xe_loss(enc_gen_zc_logits, zc_idx)
#zc_loss = cross_entropy(enc_gen_zc_logits, zc)
# Check requested metric
if wass_metric:
# Wasserstein GAN loss
ge_loss = torch.mean(D_gen) + betan * zn_loss + betac * zc_loss
else:
# Vanilla GAN loss
valid = Variable(Tensor(gen_imgs.size(0), 1).fill_(1.0), requires_grad=False)
v_loss = bce_loss(D_gen, valid)
ge_loss = v_loss + betan * zn_loss + betac * zc_loss
ge_loss.backward(retain_graph=True)
optimizer_GE.step()
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
# Measure discriminator's ability to classify real from generated samples
if wass_metric:
# Gradient penalty term
grad_penalty = calc_gradient_penalty(discriminator, real_imgs, gen_imgs)
# Wasserstein GAN loss w/gradient penalty
d_loss = torch.mean(D_real) - torch.mean(D_gen) + grad_penalty
else:
# Vanilla GAN loss
fake = Variable(Tensor(gen_imgs.size(0), 1).fill_(0.0), requires_grad=False)
real_loss = bce_loss(D_real, valid)
fake_loss = bce_loss(D_gen, fake)
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
optimizer_D.step()
# Save training losses
d_l.append(d_loss.item())
ge_l.append(ge_loss.item())
# Generator in eval mode
generator.eval()
encoder.eval()
# Set number of examples for cycle calcs
n_sqrt_samp = 5
n_samp = n_sqrt_samp * n_sqrt_samp
## Cycle through test real -> enc -> gen
t_imgs, t_label = test_imgs.data, test_labels
#r_imgs, i_label = real_imgs.data[:n_samp], itruth_label[:n_samp]
# Encode sample real instances
e_tzn, e_tzc, e_tzc_logits = encoder(t_imgs)
# Generate sample instances from encoding
teg_imgs = generator(e_tzn, e_tzc)
# Calculate cycle reconstruction loss
img_mse_loss = mse_loss(t_imgs, teg_imgs)
# Save img reco cycle loss
c_i.append(img_mse_loss.item())
## Cycle through randomly sampled encoding -> generator -> encoder
zn_samp, zc_samp, zc_samp_idx = sample_z(shape=n_samp,
latent_dim=latent_dim,
n_c=n_c)
# Generate sample instances
gen_imgs_samp = generator(zn_samp, zc_samp)
# Encode sample instances
zn_e, zc_e, zc_e_logits = encoder(gen_imgs_samp)
# Calculate cycle latent losses
lat_mse_loss = mse_loss(zn_e, zn_samp)
lat_xe_loss = xe_loss(zc_e_logits, zc_samp_idx)
#lat_xe_loss = cross_entropy(zc_e_logits, zc_samp)
# Save latent space cycle losses
c_zn.append(lat_mse_loss.item())
c_zc.append(lat_xe_loss.item())
# Save cycled and generated examples!
r_imgs, i_label = real_imgs.data[:n_samp], itruth_label[:n_samp]
e_zn, e_zc, e_zc_logits = encoder(r_imgs)
reg_imgs = generator(e_zn, e_zc)
save_image(r_imgs.data[:n_samp],
'%s/real_%06i.png' %(imgs_dir, epoch),
nrow=n_sqrt_samp, normalize=True)
save_image(reg_imgs.data[:n_samp],
'%s/reg_%06i.png' %(imgs_dir, epoch),
nrow=n_sqrt_samp, normalize=True)
save_image(gen_imgs_samp.data[:n_samp],
'%s/gen_%06i.png' %(imgs_dir, epoch),
nrow=n_sqrt_samp, normalize=True)
## Generate samples for specified classes
stack_imgs = []
for idx in range(n_c):
# Sample specific class
zn_samp, zc_samp, zc_samp_idx = sample_z(shape=n_c,
latent_dim=latent_dim,
n_c=n_c,
fix_class=idx)
# Generate sample instances
gen_imgs_samp = generator(zn_samp, zc_samp)
if (len(stack_imgs) == 0):
stack_imgs = gen_imgs_samp
else:
stack_imgs = torch.cat((stack_imgs, gen_imgs_samp), 0)
# Save class-specified generated examples!
save_image(stack_imgs,
'%s/gen_classes_%06i.png' %(imgs_dir, epoch),
nrow=n_c, normalize=True)
print ("[Epoch %d/%d] \n"\
"\tModel Losses: [D: %f] [GE: %f]" % (epoch,
n_epochs,
d_loss.item(),
ge_loss.item())
)
print("\tCycle Losses: [x: %f] [z_n: %f] [z_c: %f]"%(img_mse_loss.item(),
lat_mse_loss.item(),
lat_xe_loss.item())
)
# Save training results
train_df = pd.DataFrame({
'n_epochs' : n_epochs,
'learning_rate' : lr,
'beta_1' : b1,
'beta_2' : b2,
'weight_decay' : decay,
'n_skip_iter' : n_skip_iter,
'latent_dim' : latent_dim,
'n_classes' : n_c,
'beta_n' : betan,
'beta_c' : betac,
'wass_metric' : wass_metric,
'gen_enc_loss' : ['G+E', ge_l],
'disc_loss' : ['D', d_l],
'zn_cycle_loss' : ['$||Z_n-E(G(x))_n||$', c_zn],
'zc_cycle_loss' : ['$||Z_c-E(G(x))_c||$', c_zc],
'img_cycle_loss' : ['$||X-G(E(x))||$', c_i]
})
train_df.to_csv('%s/training_details.csv'%(run_dir))
# Plot some training results
plot_train_loss(df=train_df,
arr_list=['gen_enc_loss', 'disc_loss'],
figname='%s/training_model_losses.png'%(run_dir)
)
plot_train_loss(df=train_df,
arr_list=['zn_cycle_loss', 'zc_cycle_loss', 'img_cycle_loss'],
figname='%s/training_cycle_loss.png'%(run_dir)
)
# Save current state of trained models
model_list = [discriminator, encoder, generator]
save_model(models=model_list, out_dir=models_dir)
if __name__ == "__main__":
main()