forked from zhampel/clusterGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtsne-cluster.py
133 lines (105 loc) · 4.42 KB
/
tsne-cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from __future__ import print_function
try:
import argparse
import os
import numpy as np
import sys
np.set_printoptions(threshold=sys.maxsize)
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import pandas as pd
from torch.autograd import Variable
from torch.autograd import grad as torch_grad
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import datasets
import torchvision.transforms as transforms
from torchvision.utils import save_image
from itertools import chain as ichain
from clusgan.definitions import DATASETS_DIR, RUNS_DIR
from clusgan.models import Generator_CNN, Encoder_CNN, Discriminator_CNN
from clusgan.datasets import get_dataloader, dataset_list
from sklearn.manifold import TSNE
except ImportError as e:
print(e)
raise ImportError
def main():
global args
parser = argparse.ArgumentParser(description="TSNE generation script")
parser.add_argument("-r", "--run_dir", dest="run_dir", help="Training run directory")
parser.add_argument("-p", "--perplexity", dest="perplexity", default=-1, type=int, help="TSNE perplexity")
parser.add_argument("-n", "--n_samples", dest="n_samples", default=100, type=int, help="Number of samples")
args = parser.parse_args()
# TSNE setup
n_samples = args.n_samples
perplexity = args.perplexity
# Directory structure for this run
run_dir = args.run_dir.rstrip("/")
run_name = run_dir.split(os.sep)[-1]
dataset_name = run_dir.split(os.sep)[-2]
run_dir = os.path.join(RUNS_DIR, dataset_name, run_name)
data_dir = os.path.join(DATASETS_DIR, dataset_name)
imgs_dir = os.path.join(run_dir, 'images')
models_dir = os.path.join(run_dir, 'models')
# Latent space info
train_df = pd.read_csv('%s/training_details.csv'%(run_dir))
latent_dim = train_df['latent_dim'][0]
n_c = train_df['n_classes'][0]
cuda = True if torch.cuda.is_available() else False
# Load encoder model
encoder = Encoder_CNN(latent_dim, n_c)
enc_figname = os.path.join(models_dir, encoder.name + '.pth.tar')
encoder.load_state_dict(torch.load(enc_figname))
encoder.cuda()
encoder.eval()
# Configure data loader
dataloader = get_dataloader(dataset_name=dataset_name, data_dir=data_dir, batch_size=n_samples, train_set=False)
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
# Load TSNE
if (perplexity < 0):
tsne = TSNE(n_components=2, verbose=1, init='pca', random_state=0)
fig_title = "PCA Initialization"
figname = os.path.join(run_dir, 'tsne-pca.png')
else:
tsne = TSNE(n_components=2, verbose=1, perplexity=perplexity, n_iter=300)
fig_title = "Perplexity = $%d$"%perplexity
figname = os.path.join(run_dir, 'tsne-plex%i.png'%perplexity)
# Get full batch for encoding
imgs, labels = next(iter(dataloader))
c_imgs = Variable(imgs.type(Tensor), requires_grad=False)
# Encode real images
enc_zn, enc_zc, enc_zc_logits = encoder(c_imgs)
# Stack latent space encoding
enc = np.hstack((enc_zn.cpu().detach().numpy(), enc_zc_logits.cpu().detach().numpy()))
#enc = np.hstack((enc_zn.cpu().detach().numpy(), enc_zc.cpu().detach().numpy()))
# Cluster with TSNE
tsne_enc = tsne.fit_transform(enc)
# Convert to numpy for indexing purposes
labels = labels.cpu().data.numpy()
# Color and marker for each true class
colors = cm.rainbow(np.linspace(0, 1, n_c))
markers = matplotlib.markers.MarkerStyle.filled_markers
# Save TSNE figure to file
fig, ax = plt.subplots(figsize=(16,10))
for iclass in range(0, n_c):
# Get indices for each class
idxs = labels==iclass
# Scatter those points in tsne dims
ax.scatter(tsne_enc[idxs, 0],
tsne_enc[idxs, 1],
marker=markers[iclass],
c=colors[iclass],
edgecolor=None,
label=r'$%i$'%iclass)
ax.set_title(r'%s'%fig_title, fontsize=24)
ax.set_xlabel(r'$X^{\mathrm{tSNE}}_1$', fontsize=18)
ax.set_ylabel(r'$X^{\mathrm{tSNE}}_2$', fontsize=18)
plt.legend(title=r'Class', loc='best', numpoints=1, fontsize=16)
plt.tight_layout()
fig.savefig(figname)
if __name__ == "__main__":
main()