-
Notifications
You must be signed in to change notification settings - Fork 225
/
Copy pathfft.rs
236 lines (200 loc) · 6.88 KB
/
fft.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
//! The Fast Fourier Transform (FFT) and Number Theoretic Transform (NTT)
use super::num::{CommonField, Complex, PI};
use std::ops::{Add, Div, Mul, Neg, Sub};
// We can delete this struct once f64::reverse_bits() stabilizes.
struct BitRevIterator {
a: usize,
n: usize,
}
impl BitRevIterator {
fn new(n: usize) -> Self {
assert!(n.is_power_of_two());
Self { a: 2 * n - 1, n }
}
}
impl Iterator for BitRevIterator {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
if self.a == 2 * self.n - 2 {
return None;
}
let mut mask = self.n;
while self.a & mask > 0 {
self.a ^= mask;
mask /= 2;
}
self.a |= mask;
Some(self.a / 2)
}
}
#[allow(clippy::upper_case_acronyms)]
pub trait FFT: Sized + Copy {
type F: Sized
+ Copy
+ From<Self>
+ Neg
+ Add<Output = Self::F>
+ Div<Output = Self::F>
+ Mul<Output = Self::F>
+ Sub<Output = Self::F>;
const ZERO: Self;
/// A primitive nth root of one raised to the powers 0, 1, 2, ..., n/2 - 1
fn get_roots(n: usize, inverse: bool) -> Vec<Self::F>;
/// 1 for forward transform, 1/n for inverse transform
fn get_factor(n: usize, inverse: bool) -> Self::F;
/// The inverse of Self::F::from()
fn extract(f: Self::F) -> Self;
}
impl FFT for f64 {
type F = Complex;
const ZERO: f64 = 0.0;
fn get_roots(n: usize, inverse: bool) -> Vec<Self::F> {
let step = if inverse { -2.0 } else { 2.0 } * PI / n as f64;
(0..n / 2)
.map(|i| Complex::from_polar(1.0, step * i as f64))
.collect()
}
fn get_factor(n: usize, inverse: bool) -> Self::F {
Self::F::from(if inverse { (n as f64).recip() } else { 1.0 })
}
fn extract(f: Self::F) -> f64 {
f.real
}
}
// NTT notes: see problem 30-6 in CLRS for details, keeping in mind that
// 2187 and 410692747 are inverses and 2^26th roots of 1 mod (7<<26)+1
// 15311432 and 469870224 are inverses and 2^23rd roots of 1 mod (119<<23)+1
// 440564289 and 1713844692 are inverses and 2^27th roots of 1 mod (15<<27)+1
// 125 and 2267742733 are inverses and 2^30th roots of 1 mod (3<<30)+1
impl FFT for i64 {
type F = CommonField;
const ZERO: Self = 0;
fn get_roots(n: usize, inverse: bool) -> Vec<Self::F> {
assert!(n <= 1 << 23);
let mut prim_root = Self::F::from(15_311_432);
if inverse {
prim_root = prim_root.recip();
}
for _ in (0..).take_while(|&i| n < 1 << (23 - i)) {
prim_root = prim_root * prim_root;
}
let mut roots = Vec::with_capacity(n / 2);
let mut root = Self::F::from(1);
for _ in 0..roots.capacity() {
roots.push(root);
root = root * prim_root;
}
roots
}
fn get_factor(n: usize, inverse: bool) -> Self::F {
Self::F::from(if inverse { n as Self } else { 1 }).recip()
}
fn extract(f: Self::F) -> Self {
f.val
}
}
/// Computes the discrete fourier transform of v, whose length is a power of 2.
/// Forward transform: polynomial coefficients -> evaluate at roots of unity
/// Inverse transform: values at roots of unity -> interpolated coefficients
pub fn fft<T: FFT>(v: &[T::F], inverse: bool) -> Vec<T::F> {
let n = v.len();
assert!(n.is_power_of_two());
let factor = T::get_factor(n, inverse);
let roots_of_unity = T::get_roots(n, inverse);
let mut dft = BitRevIterator::new(n)
.map(|i| v[i] * factor)
.collect::<Vec<_>>();
for m in (0..).map(|s| 1 << s).take_while(|&m| m < n) {
for k in (0..n).step_by(2 * m) {
for j in 0..m {
let u = dft[k + j];
let t = dft[k + j + m] * roots_of_unity[n / 2 / m * j];
dft[k + j] = u + t;
dft[k + j + m] = u - t;
}
}
}
dft
}
/// From a slice of reals (f64 or i64), computes DFT of size at least desired_len
pub fn dft_from_reals<T: FFT>(v: &[T], desired_len: usize) -> Vec<T::F> {
assert!(v.len() <= desired_len);
let complex_v = v
.iter()
.cloned()
.chain(std::iter::repeat(T::ZERO))
.take(desired_len.next_power_of_two())
.map(T::F::from)
.collect::<Vec<_>>();
fft::<T>(&complex_v, false)
}
/// The inverse of dft_from_reals()
pub fn idft_to_reals<T: FFT>(dft_v: &[T::F], desired_len: usize) -> Vec<T> {
assert!(dft_v.len() >= desired_len);
let complex_v = fft::<T>(dft_v, true);
complex_v
.into_iter()
.take(desired_len)
.map(T::extract)
.collect()
}
/// Given two polynomials (vectors) sum_i a[i] x^i and sum_i b[i] x^i,
/// computes their product (convolution) c[k] = sum_(i+j=k) a[i]*b[j].
/// Uses complex FFT if inputs are f64, or modular NTT if inputs are i64.
pub fn convolution<T: FFT>(a: &[T], b: &[T]) -> Vec<T> {
let len_c = a.len() + b.len() - 1;
let dft_a = dft_from_reals(a, len_c).into_iter();
let dft_b = dft_from_reals(b, len_c).into_iter();
let dft_c = dft_a.zip(dft_b).map(|(a, b)| a * b).collect::<Vec<_>>();
idft_to_reals(&dft_c, len_c)
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_complex_dft() {
let v = vec![7.0, 1.0, 1.0];
let dft_v = dft_from_reals(&v, v.len());
let new_v: Vec<f64> = idft_to_reals(&dft_v, v.len());
let six = Complex::from(6.0);
let seven = Complex::from(7.0);
let nine = Complex::from(9.0);
let i = Complex::new(0.0, 1.0);
assert_eq!(dft_v, vec![nine, six + i, seven, six - i]);
assert_eq!(new_v, v);
}
#[test]
fn test_modular_dft() {
let v = vec![7, 1, 1];
let dft_v = dft_from_reals(&v, v.len());
let new_v: Vec<i64> = idft_to_reals(&dft_v, v.len());
let seven = CommonField::from(7);
let one = CommonField::from(1);
let prim = CommonField::from(15_311_432).pow(1 << 21);
let prim2 = prim * prim;
let eval0 = seven + one + one;
let eval1 = seven + prim + prim2;
let eval2 = seven + prim2 + one;
let eval3 = seven + prim.recip() + prim2;
assert_eq!(dft_v, vec![eval0, eval1, eval2, eval3]);
assert_eq!(new_v, v);
}
#[test]
fn test_complex_convolution() {
let x = vec![7.0, 1.0, 1.0];
let y = vec![2.0, 4.0];
let z = convolution(&x, &y);
let m = convolution(&vec![999.0], &vec![1e6]);
assert_eq!(z, vec![14.0, 30.0, 6.0, 4.0]);
assert_eq!(m, vec![999e6]);
}
#[test]
fn test_modular_convolution() {
let x = vec![7, 1, 1];
let y = vec![2, 4];
let z = convolution(&x, &y);
let m = convolution(&vec![999], &vec![1_000_000]);
assert_eq!(z, vec![14, 30, 6, 4]);
assert_eq!(m, vec![999_000_000 - super::super::num::COMMON_PRIME]);
}
}