-
Notifications
You must be signed in to change notification settings - Fork 225
/
Copy pathstring_proc.rs
435 lines (392 loc) · 13.8 KB
/
string_proc.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
//! String processing algorithms.
use std::cmp::{max, min};
use std::collections::{hash_map::Entry, HashMap, VecDeque};
/// Prefix trie, easily augmentable by adding more fields and/or methods
pub struct Trie<C: std::hash::Hash + Eq> {
links: Vec<HashMap<C, usize>>,
}
impl<C: std::hash::Hash + Eq> Default for Trie<C> {
/// Creates an empty trie with a root node.
fn default() -> Self {
Self {
links: vec![HashMap::new()],
}
}
}
impl<C: std::hash::Hash + Eq> Trie<C> {
/// Inserts a word into the trie, and returns the index of its node.
pub fn insert(&mut self, word: impl IntoIterator<Item = C>) -> usize {
let mut node = 0;
for ch in word {
let len = self.links.len();
node = match self.links[node].entry(ch) {
Entry::Occupied(entry) => *entry.get(),
Entry::Vacant(entry) => {
entry.insert(len);
self.links.push(HashMap::new());
len
}
}
}
node
}
/// Finds a word in the trie, and returns the index of its node.
pub fn get(&self, word: impl IntoIterator<Item = C>) -> Option<usize> {
let mut node = 0;
for ch in word {
node = *self.links[node].get(&ch)?;
}
Some(node)
}
}
/// Single-pattern matching with the Knuth-Morris-Pratt algorithm
pub struct Matcher<'a, C: Eq> {
/// The string pattern to search for.
pub pattern: &'a [C],
/// KMP match failure automaton: fail[i] is the length of the longest
/// string that's both a proper prefix and a proper suffix of pattern[0..=i].
pub fail: Vec<usize>,
}
impl<'a, C: Eq> Matcher<'a, C> {
/// Precomputes the automaton that allows linear-time string matching.
///
/// # Example
///
/// ```
/// use contest_algorithms::string_proc::Matcher;
/// let byte_string: &[u8] = b"hello";
/// let utf8_string: &str = "hello";
/// let vec_char: Vec<char> = utf8_string.chars().collect();
///
/// let match_from_byte_literal = Matcher::new(byte_string);
/// let match_from_utf8 = Matcher::new(utf8_string.as_bytes());
/// let match_from_chars = Matcher::new(&vec_char);
///
/// let vec_int = vec![4, -3, 1];
/// let match_from_ints = Matcher::new(&vec_int);
/// ```
///
/// # Panics
///
/// Panics if pattern is empty.
pub fn new(pattern: &'a [C]) -> Self {
let mut fail = Vec::with_capacity(pattern.len());
fail.push(0);
let mut len = 0;
for ch in &pattern[1..] {
while len > 0 && pattern[len] != *ch {
len = fail[len - 1];
}
if pattern[len] == *ch {
len += 1;
}
fail.push(len);
}
Self { pattern, fail }
}
/// KMP algorithm, sets @return[i] = length of longest prefix of pattern
/// matching a suffix of text[0..=i].
pub fn kmp_match(&self, text: impl IntoIterator<Item = C>) -> Vec<usize> {
let mut len = 0;
text.into_iter()
.map(|ch| {
if len == self.pattern.len() {
len = self.fail[len - 1];
}
while len > 0 && self.pattern[len] != ch {
len = self.fail[len - 1];
}
if self.pattern[len] == ch {
len += 1;
}
len
})
.collect()
}
}
/// Multi-pattern matching with the Aho-Corasick algorithm
pub struct MultiMatcher<C: std::hash::Hash + Eq> {
/// A prefix trie storing the string patterns to search for.
pub trie: Trie<C>,
/// Stores which completed pattern string each node corresponds to.
pub pat_id: Vec<Option<usize>>,
/// Aho-Corasick failure automaton. fail[i] is the node corresponding to the
/// longest prefix-suffix of the node corresponding to i.
pub fail: Vec<usize>,
/// Shortcut to the next match along the failure chain, or to the root.
pub fast: Vec<usize>,
}
impl<C: std::hash::Hash + Eq> MultiMatcher<C> {
fn next(trie: &Trie<C>, fail: &[usize], mut node: usize, ch: &C) -> usize {
loop {
if let Some(&child) = trie.links[node].get(ch) {
return child;
} else if node == 0 {
return 0;
}
node = fail[node];
}
}
/// Precomputes the automaton that allows linear-time string matching.
/// If there are duplicate patterns, all but one copy will be ignored.
pub fn new(patterns: impl IntoIterator<Item = impl IntoIterator<Item = C>>) -> Self {
let mut trie = Trie::default();
#[allow(clippy::needless_collect)] // It's not needless: it affects trie.links.len()
let pat_nodes: Vec<usize> = patterns.into_iter().map(|pat| trie.insert(pat)).collect();
let mut pat_id = vec![None; trie.links.len()];
for (i, node) in pat_nodes.into_iter().enumerate() {
pat_id[node] = Some(i);
}
let mut fail = vec![0; trie.links.len()];
let mut fast = vec![0; trie.links.len()];
let mut q: VecDeque<usize> = trie.links[0].values().cloned().collect();
while let Some(node) = q.pop_front() {
for (ch, &child) in &trie.links[node] {
let nx = Self::next(&trie, &fail, fail[node], ch);
fail[child] = nx;
fast[child] = if pat_id[nx].is_some() { nx } else { fast[nx] };
q.push_back(child);
}
}
Self {
trie,
pat_id,
fail,
fast,
}
}
/// Aho-Corasick algorithm, sets @return[i] = node corresponding to
/// longest prefix of some pattern matching a suffix of text[0..=i].
pub fn ac_match(&self, text: impl IntoIterator<Item = C>) -> Vec<usize> {
let mut node = 0;
text.into_iter()
.map(|ch| {
node = Self::next(&self.trie, &self.fail, node, &ch);
node
})
.collect()
}
/// For each non-empty match, returns where in the text it ends, and the index
/// of the corresponding pattern.
pub fn get_end_pos_and_pat_id(&self, match_nodes: &[usize]) -> Vec<(usize, usize)> {
let mut res = vec![];
for (text_pos, &(mut node)) in match_nodes.iter().enumerate() {
while node != 0 {
if let Some(id) = self.pat_id[node] {
res.push((text_pos + 1, id));
}
node = self.fast[node];
}
}
res
}
}
/// Suffix array data structure, useful for a variety of string queries.
pub struct SuffixArray {
/// The suffix array itself, holding suffix indices in sorted order.
pub sfx: Vec<usize>,
/// rank[i][j] = rank of the j'th suffix, considering only 2^i chars.
/// In other words, rank[i] is a ranking of the substrings text[j..j+2^i].
pub rank: Vec<Vec<usize>>,
}
impl SuffixArray {
/// O(n + max_key) stable sort on the items generated by vals.
/// Items v in vals are sorted according to val_to_key[v].
fn counting_sort(
vals: impl Iterator<Item = usize> + Clone,
val_to_key: &[usize],
max_key: usize,
) -> Vec<usize> {
let mut counts = vec![0; max_key];
for v in vals.clone() {
counts[val_to_key[v]] += 1;
}
let mut total = 0;
for c in counts.iter_mut() {
total += *c;
*c = total - *c;
}
let mut result = vec![0; total];
for v in vals {
let c = &mut counts[val_to_key[v]];
result[*c] = v;
*c += 1;
}
result
}
/// Suffix array construction in O(n log n) time.
pub fn new(text: impl IntoIterator<Item = u8>) -> Self {
let init_rank = text.into_iter().map(|ch| ch as usize).collect::<Vec<_>>();
let n = init_rank.len();
let mut sfx = Self::counting_sort(0..n, &init_rank, 256);
let mut rank = vec![init_rank];
// Invariant at the start of every loop iteration:
// suffixes are sorted according to the first skip characters.
for skip in (0..).map(|i| 1 << i).take_while(|&skip| skip < n) {
let prev_rank = rank.last().unwrap();
let mut cur_rank = prev_rank.clone();
let pos = (n - skip..n).chain(sfx.into_iter().filter_map(|p| p.checked_sub(skip)));
sfx = Self::counting_sort(pos, prev_rank, max(n, 256));
let mut prev = sfx[0];
cur_rank[prev] = 0;
for &cur in sfx.iter().skip(1) {
if max(prev, cur) + skip < n
&& prev_rank[prev] == prev_rank[cur]
&& prev_rank[prev + skip] == prev_rank[cur + skip]
{
cur_rank[cur] = cur_rank[prev];
} else {
cur_rank[cur] = cur_rank[prev] + 1;
}
prev = cur;
}
rank.push(cur_rank);
}
Self { sfx, rank }
}
/// Computes the length of longest common prefix of text[i..] and text[j..].
pub fn longest_common_prefix(&self, mut i: usize, mut j: usize) -> usize {
let mut len = 0;
for (k, rank) in self.rank.iter().enumerate().rev() {
if rank[i] == rank[j] {
i += 1 << k;
j += 1 << k;
len += 1 << k;
if max(i, j) >= self.sfx.len() {
break;
}
}
}
len
}
}
/// Manacher's algorithm for computing palindrome substrings in linear time.
/// pal[2*i] = odd length of palindrome centred at text[i].
/// pal[2*i+1] = even length of palindrome centred at text[i+0.5].
///
/// # Panics
///
/// Panics if text is empty.
pub fn palindromes(text: &[impl Eq]) -> Vec<usize> {
let mut pal = Vec::with_capacity(2 * text.len() - 1);
pal.push(1);
while pal.len() < pal.capacity() {
let i = pal.len() - 1;
let max_len = min(i + 1, pal.capacity() - i);
while pal[i] < max_len && text[(i - pal[i] - 1) / 2] == text[(i + pal[i] + 1) / 2] {
pal[i] += 2;
}
if let Some(a) = 1usize.checked_sub(pal[i]) {
pal.push(a);
} else {
for d in 1.. {
let (a, b) = (pal[i - d], pal[i] - d);
if a < b {
pal.push(a);
} else {
pal.push(b);
break;
}
}
}
}
pal
}
/// Z algorithm: computes the array Z[..], where Z[i] is the length of the
/// longest text prefix of text[i..] that is **also a prefix** of text.
///
/// It runs in O(n) time, maintaining the invariant that l <= i and
/// text[0..r-l] == text[l..r]. It can be embedded in a larger algorithm,
/// or used for string searching as an alternative to KMP.
///
/// # Example
///
/// ```
/// use contest_algorithms::string_proc::z_algorithm;
/// let z = z_algorithm(b"ababbababbabababbabababbababbaba");
/// assert_eq!(
/// z,
/// vec![
/// 32, 0, 2, 0, 0, 9, 0, 2, 0, 0, 4, 0, 9, 0, 2, 0, 0, 4, 0, 13, 0, 2,
/// 0, 0, 8, 0, 2, 0, 0, 3, 0, 1,
/// ],
/// );
/// ```
pub fn z_algorithm(text: &[impl Eq]) -> Vec<usize> {
let n = text.len();
let (mut l, mut r) = (1, 1);
let mut z = Vec::with_capacity(n);
z.push(n);
for i in 1..n {
if r > i + z[i - l] {
z.push(z[i - l]);
} else {
l = i;
while r < i || (r < n && text[r - i] == text[r]) {
r += 1;
}
z.push(r - i);
}
}
z
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_trie() {
let dict = vec!["banana", "benefit", "banapple", "ban"];
let trie = dict.into_iter().fold(Trie::default(), |mut trie, word| {
trie.insert(word.bytes());
trie
});
assert_eq!(trie.get("".bytes()), Some(0));
assert_eq!(trie.get("b".bytes()), Some(1));
assert_eq!(trie.get("banana".bytes()), Some(6));
assert_eq!(trie.get("be".bytes()), Some(7));
assert_eq!(trie.get("bane".bytes()), None);
}
#[test]
fn test_kmp_matching() {
let pattern = "ana";
let text = "banana";
let matches = Matcher::new(pattern.as_bytes()).kmp_match(text.bytes());
assert_eq!(matches, vec![0, 1, 2, 3, 2, 3]);
}
#[test]
fn test_ac_matching() {
let dict = vec!["banana", "benefit", "banapple", "ban", "fit"];
let text = "banana bans, apple benefits.";
let matcher = MultiMatcher::new(dict.iter().map(|s| s.bytes()));
let match_nodes = matcher.ac_match(text.bytes());
let end_pos_and_id = matcher.get_end_pos_and_pat_id(&match_nodes);
assert_eq!(
end_pos_and_id,
vec![(3, 3), (6, 0), (10, 3), (26, 1), (26, 4)]
);
}
#[test]
fn test_suffix_array() {
let text1 = "bobocel";
let text2 = "banana";
let sfx1 = SuffixArray::new(text1.bytes());
let sfx2 = SuffixArray::new(text2.bytes());
assert_eq!(sfx1.sfx, vec![0, 2, 4, 5, 6, 1, 3]);
assert_eq!(sfx2.sfx, vec![5, 3, 1, 0, 4, 2]);
assert_eq!(sfx1.longest_common_prefix(0, 2), 2);
assert_eq!(sfx2.longest_common_prefix(1, 3), 3);
// Check that sfx and rank.last() are essentially inverses of each other.
for (p, &r) in sfx1.rank.last().unwrap().iter().enumerate() {
assert_eq!(sfx1.sfx[r], p);
}
for (p, &r) in sfx2.rank.last().unwrap().iter().enumerate() {
assert_eq!(sfx2.sfx[r], p);
}
}
#[test]
fn test_palindrome() {
let text = "banana";
let pal_len = palindromes(text.as_bytes());
assert_eq!(pal_len, vec![1, 0, 1, 0, 3, 0, 5, 0, 3, 0, 1]);
}
}