-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProcessData.py
27 lines (21 loc) · 866 Bytes
/
ProcessData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import numpy as np
class ProcessData:
def __init__(self):
pass
# normalization data using (x-min)/(max-min)
def normalize_data_min_min_max(self, data):
min_value = min(data)
max_value = max(data)
return [(float(i) - min_value) / float(max_value - min_value) for i in data]
# normalization data using (x-mean)/(max-min)
def normalize_data_mean_min_max(self, data):
mean_value = np.mean(data)
min_value = min(data)
max_value = max(data)
return [(float(i) - mean_value) / (max_value - min_value) for i in data]
def normalize_data_z_score(self, data):
mean_value = np.mean(data)
s2 = sum([(i - mean_value) * (i - mean_value) for i in data]) / len(data) ** 0.5
return [(i - mean_value) / s2 for i in data]
def cluster_data(self, data):
pass