forked from tugstugi/pytorch-dc-tts
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathhyperparams.py
47 lines (38 loc) · 1.91 KB
/
hyperparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""Hyper parameters."""
__author__ = 'Erdene-Ochir Tuguldur'
class HParams:
"""Hyper parameters"""
disable_progress_bar = False # set True if you don't want the progress bar in the console
logdir = "../logdir_disgust2/" # log dir where the checkpoints and tensorboard files are saved
# audio.py options, these values are from https://github.com/Kyubyong/dc_tts/blob/master/hyperparams.py
reduction_rate = 4 # melspectrogram reduction rate, don't change because SSRN is using this rate
n_fft = 2048 # fft points (samples)
n_mels = 80 # Number of Mel banks to generate
power = 1.5 # Exponent for amplifying the predicted magnitude
n_iter = 50 # Number of inversion iterations
preemphasis = .97
max_db = 100
ref_db = 20
sr = 22050 # Sampling rate
frame_shift = 0.0125 # seconds
frame_length = 0.05 # seconds
hop_length = int(sr * frame_shift) # samples. =276.
win_length = int(sr * frame_length) # samples. =1102.
max_N = 180 # Maximum number of characters.
max_T = 210 # Maximum number of mel frames.
e = 128 # embedding dimension
d = 256 # Text2Mel hidden unit dimension
c = 512+128 # SSRN hidden unit dimension
dropout_rate = 0.05 # dropout
# Text2Mel network options
text2mel_lr = 0.005 # learning rate
text2mel_max_iteration = 5000 # max train step = 300k, fine tuning for 100k steps
text2mel_weight_init = 'none' # 'kaiming', 'xavier' or 'none'
text2mel_normalization = 'layer' # 'layer', 'weight' or 'none'
text2mel_basic_block = 'gated_conv' # 'highway', 'gated_conv' or 'residual'
# SSRN network options
ssrn_lr = 0.0005 # learning rate
ssrn_max_iteration = 150000 # max train step
ssrn_weight_init = 'kaiming' # 'kaiming', 'xavier' or 'none'
ssrn_normalization = 'weight' # 'layer', 'weight' or 'none'
ssrn_basic_block = 'residual' # 'highway', 'gated_conv' or 'residual'