diff --git a/.gitignore b/.gitignore
index 234fd5d7..bca7f873 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,6 +1,6 @@
*.pyc
.pytest_cache/
-TPOT2.egg-info
+TPOT.egg-info
TPOT.egg-info
*.tar.gz
*.pkl
diff --git a/README.md b/README.md
index e05b407e..346f6b88 100644
--- a/README.md
+++ b/README.md
@@ -6,9 +6,9 @@
-![Tests](https://github.com/EpistasisLab/tpot2/actions/workflows/tests.yml/badge.svg)
-[![PyPI Downloads](https://img.shields.io/pypi/dm/tpot2?label=pypi%20downloads)](https://pypi.org/project/TPOT2)
-[![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/tpot2?label=conda%20downloads)](https://anaconda.org/conda-forge/tpot2)
+![Tests](https://github.com/EpistasisLab/tpot/actions/workflows/tests.yml/badge.svg)
+[![PyPI Downloads](https://img.shields.io/pypi/dm/tpot?label=pypi%20downloads)](https://pypi.org/project/TPOT)
+[![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/tpot?label=conda%20downloads)](https://anaconda.org/conda-forge/tpot)
TPOT stands for Tree-based Pipeline Optimization Tool. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming. Consider TPOT your Data Science Assistant.
@@ -39,7 +39,7 @@ The original version of TPOT was primarily developed at the University of Pennsy
## License
-Please see the [repository license](https://github.com/EpistasisLab/tpot2/blob/main/LICENSE) for the licensing and usage information for TPOT.
+Please see the [repository license](https://github.com/EpistasisLab/tpot/blob/main/LICENSE) for the licensing and usage information for TPOT.
Generally, we have licensed TPOT to make it as widely usable as possible.
TPOT is free software: you can redistribute it and/or modify
@@ -57,7 +57,7 @@ License along with TPOT. If not, see
Pipeline(steps=[('passthrough', Passthrough()),\n", - " ('selectfwe', SelectFwe(alpha=0.0012275167982)),\n", + "Pipeline(steps=[('passthrough', Passthrough()),\n", + " ('selectfwe', SelectFwe(alpha=0.0078121592703)),\n", " ('featureunion-1',\n", - " FeatureUnion(transformer_list=[('skiptransformer',\n", - " SkipTransformer()),\n", + " FeatureUnion(transformer_list=[('featureunion',\n", + " FeatureUnion(transformer_list=[('zerocount',\n", + " ZeroCount())])),\n", " ('passthrough',\n", " Passthrough())])),\n", " ('featureunion-2',\n", @@ -879,12 +468,13 @@ " ('passthrough',\n", " Passthrough())])),\n", " ('adaboostclassifier',\n", - " AdaBoostClassifier(learning_rate=0.9052253032837,\n", - " n_estimators=273))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org." + " AdaBoostClassifier(learning_rate=0.8192422162344,\n", + " n_estimators=446))])Pipeline(steps=[('passthrough', Passthrough()),\n", - " ('selectfwe', SelectFwe(alpha=0.0012275167982)),\n", + " AdaBoostClassifier(learning_rate=0.8192422162344,\n", + " n_estimators=446))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.Pipeline(steps=[('passthrough', Passthrough()),\n", + " ('selectfwe', SelectFwe(alpha=0.0078121592703)),\n", " ('featureunion-1',\n", - " FeatureUnion(transformer_list=[('skiptransformer',\n", - " SkipTransformer()),\n", + " FeatureUnion(transformer_list=[('featureunion',\n", + " FeatureUnion(transformer_list=[('zerocount',\n", + " ZeroCount())])),\n", " ('passthrough',\n", " Passthrough())])),\n", " ('featureunion-2',\n", @@ -893,17 +483,20 @@ " ('passthrough',\n", " Passthrough())])),\n", " ('adaboostclassifier',\n", - " AdaBoostClassifier(learning_rate=0.9052253032837,\n", - " n_estimators=273))])Passthrough()SelectFwe(alpha=0.0012275167982)FeatureUnion(transformer_list=[('skiptransformer', SkipTransformer()),\n", - " ('passthrough', Passthrough())])SkipTransformer()Passthrough()FeatureUnion(transformer_list=[('skiptransformer', SkipTransformer()),\n", - " ('passthrough', Passthrough())])SkipTransformer()Passthrough()AdaBoostClassifier(learning_rate=0.9052253032837, n_estimators=273)Passthrough()SelectFwe(alpha=0.0078121592703)FeatureUnion(transformer_list=[('featureunion',\n", + " FeatureUnion(transformer_list=[('zerocount',\n", + " ZeroCount())])),\n", + " ('passthrough', Passthrough())])ZeroCount()Passthrough()FeatureUnion(transformer_list=[('skiptransformer', SkipTransformer()),\n", + " ('passthrough', Passthrough())])SkipTransformer()Passthrough()AdaBoostClassifier(learning_rate=0.8192422162344, n_estimators=446)
350 rows × 11 columns
\n", + "250 rows × 11 columns
\n", "" ], "text/plain": [ - " roc_auc_score complexity_scorer Parents Variation_Function \\\n", - "0 0.964012 1745.5 NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 0.991667 24030.0 NaN NaN \n", - ".. ... ... ... ... \n", - "345 0.992793 4374.0 (237, 237) ind_mutate \n", - "346 0.520972 9.0 (128, 128) ind_mutate \n", - "347 NaN NaN (109, 85) ind_crossover \n", - "348 0.976466 21.0 (296, 128) ind_crossover , ind_mutate \n", - "349 0.990725 14.0 (297, 213) ind_crossover \n", + " roc_auc_score complexity_scorer Parents Variation_Function \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 0.991827 10703.0 NaN NaN \n", + "4 NaN NaN NaN NaN \n", + ".. ... ... ... ... \n", + "245 0.990522 9.0 (155, 155) ind_mutate \n", + "246 0.949947 6.0 (87, 17) ind_crossover \n", + "247 NaN NaN (14, 14) ind_mutate \n", + "248 0.988965 18.0 (199, 116) ind_crossover \n", + "249 0.985246 9.0 (68, 142) ind_crossover \n", "\n", " Individual Generation \\\n", - "0