forked from fuzzythecat/awesome-spacer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
89 lines (67 loc) · 2.91 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# -*- coding: utf-8 -*-
import os
import argparse
import tensorflow as tf
from glob import glob
from random import shuffle
from tensorflow.keras.callbacks import ModelCheckpoint
from models.config import Config
from models.utils import build_dataset
from models.spacer import Spacer
def str2bool(v):
return v.lower() in ('yes', 'y', 'true', 't')
parser = argparse.ArgumentParser()
# Training configurations
parser.add_argument('--gpu_list', type=str, default='0')
parser.add_argument('--trained_model', type=str, default='')
#parser.add_argument('--logs', type=str, default='./logs')
# Data configurations
parser.add_argument('--data_path', type=str, required=True)
parser.add_argument('--validation_split', type=float, default=.2)
parser.add_argument('--shuffle_data', type=str2bool, default=True)
FLAGS = parser.parse_args()
config = Config()
if __name__ == '__main__':
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu_list
# Data preparation
filenames = glob(os.path.join(FLAGS.data_path, '*.txt'))
shuffle(filenames)
validation_split = int(len(filenames) * FLAGS.validation_split)
val_filenames = filenames[:validation_split]
train_filenames = filenames[validation_split:]
print('Found {} files.'.format(len(filenames)))
print('Using {} files for training.'.format(len(train_filenames)))
print('Preparing training dataset.')
X_train, y_train = build_dataset(train_filenames, config)
print('Preparing validation dataset.')
X_val, y_val = build_dataset(val_filenames, config)
train_dataset = tf.data.Dataset.from_tensor_slices((X_train, y_train))
train_dataset = train_dataset.shuffle(1024)
train_dataset = train_dataset.batch(config.BATCH_SIZE)
train_dataset = train_dataset.repeat()
valid_dataset = tf.data.Dataset.from_tensor_slices((X_val, y_val))
valid_dataset = valid_dataset.batch(config.BATCH_SIZE)
valid_dataset = valid_dataset.repeat()
# Model loading
model = Spacer(FLAGS.trained_model,
config)
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy',
tf.metrics.Precision(),
tf.metrics.Recall(),
tf.metrics.AUC()])
model.summary()
MODEL_SAVE_DIR = 'outputs/'
if not os.path.exists(MODEL_SAVE_DIR):
os.mkdir(MODEL_SAVE_DIR)
model_path = os.path.join(MODEL_SAVE_DIR,
'{epoch:02d}-{val_loss:.4f}-{val_accuracy:.4f}.hdf5')
checkpoint = ModelCheckpoint(filepath=model_path, monitor='val_loss',
verbose=1, save_best_only=True)
history = model.fit(X_train, y_train,
validation_data=(X_val, y_val),
epochs=config.EPOCHS,
batch_size=config.BATCH_SIZE,
callbacks=[checkpoint],
verbose=1)