-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbacktester.py
898 lines (790 loc) · 36.6 KB
/
backtester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
# -*- coding=utf-8 -*-
# @File : backtester.py
# @Time : 2023/8/2 11:15
# @Author : EvanHong
# @Email : [email protected]
# @Project : 2023.06.08超高频上证50指数计算
# @Description: ad
from __future__ import annotations
import logging
import os
import warnings
from abc import abstractmethod
from collections import defaultdict
from copy import deepcopy
from typing import List, Union
from sklearn.utils import shuffle
from backtest.config import *
import backtest.config as config
from backtest.support import *
from backtest.datafeeds.datafeed import LobDataFeed, LobModelFeed, PandasOHLCDataFeed, BaseDataFeed
from backtest.datafeeds.mkt_data_namespace import PandasLobMktDataNamespace, PandasOHLCMktDataNamespace
from backtest.signals.pandas_signal import PandasSignal
from backtest.recorders.observer import LobObserver, BtObserver
from backtest.preprocessors.preprocess import LobFeatureEngineering, LobTimePreprocessor, ShiftDataPreprocessor, \
AggDataPreprocessor
from backtest.statistic_tools.statistics import LobStatistics
from backtest.strategies import LobStrategy
from backtest.broker.broker import Broker, StockBroker
from backtest.broker.orders import Order
from backtest.broker.trades import Trade
from backtest.recorders.transactions import Transaction
from backtest.recorders.position import Position
from backtest.recorders.portfolio import *
from backtest.signals.pandas_signal import PandasSignal
from backtest.strategies.single_asset_strategy import SingleAssetStrategy
import numpy as np
class BaseTester(object):
def __init__(self, *args, **kwargs):
self.args = args
for key, value in kwargs.items():
self.__setattr__(key, value)
@property
def position(self):
return self._position
@position.setter
def position(self, _position: Union[Position]):
self._position = _position
@abstractmethod
def run(self):
pass
class Screen(object):
"""
sample class for properties and setters
"""
@property
def width(self):
return self._width
@width.setter
def width(self, value):
self._width = value
@property
def height(self):
return self._height
@height.setter
def height(self, value):
self._height = value
@property
def resolution(self):
return self._height * self._width
class LobBackTester(BaseTester):
"""
the whole project contains these files:
1. backtester.py: the center and controler of the backtest project.
2. ret.py: the main api to read/save ret from csv/xlsx files, and preprocess them for backtester. I have a lot of assets. And my ret frequency is 0.01s.
3. strategies/base_strategy.py: strategies implementation and signal generation for backtester
4. broker.py: including classes "Order", "Trade", "Broker" and other things you need.
5. observer.py: recorder and logger for backtester
6. statistics.py: result generator and visualization for backtester
References
----------
.. [#] Lean (Quantconnect): https://github.com/QuantConnect/Lean/blob/master/Documentation/2-Overview-Detailed-New.png
.. [#] backtrader
"""
def __init__(self,
model_root: str,
file_root: str,
dates: List[str | int],
stk_names: List[str],
levels: int,
target: str,
freq: str,
pred_n_steps: int,
use_n_steps: int,
drop_current=False,
datafeed: Union[LobDataFeed] = None,
strategy: Union[LobStrategy] = None,
broker: Union[Broker] = None,
observer: Union[LobObserver] = None,
statistics: Union[LobStatistics] = None,
*args,
**kwargs):
"""
Parameters
----------
model_root :
file_root :
dates :
stk_names :
levels : int,
n level 量价数据
target :
freq :
pred_n_steps :
use_n_steps :
drop_current : bool,
是否需要在特征中去掉current
datafeed :
strategy :
broker :
observer :
statistics :
args :
kwargs :
"""
super().__init__(*args, **kwargs)
self.datafeed = datafeed
self.strategy = strategy
self.broker = broker
self.observer = observer
self.statistics = statistics
self.clean_obh = None
self.models = []
self.model_root = model_root
self.file_root = file_root
self.dates = dates
self.stk_names = stk_names
self.levels = levels
self.target = target
self.freq = freq
self.pred_n_steps = pred_n_steps
self.use_n_steps = use_n_steps
self.drop_current = drop_current
self.param = {
'drop_current': self.drop_current,
'pred_n_steps': self.pred_n_steps,
'target': self.target,
'use_n_steps': self.use_n_steps,
}
self.alldata = defaultdict(dict) # {dates:{stk_name:ret}}
self.alldatas = defaultdict(dict) # {dates:{stk_name:[data1,data2,...]}}
self.all_signals = defaultdict(pd.DataFrame)
def load_models(self, model_root, stk_name, model_class):
model_loader = LobModelFeed(model_root=model_root, stk_name=stk_name, model_class=model_class)
self.models = model_loader.models
return self.models
def load_data(self, file_root, date, stk_name, load_obh=True, load_vol_tov=True, load_events=True) -> pd.DataFrame:
"""
:param file_root:
:param date:
:param stk_name:
:return: pd.DataFrame,(clean_obh_dict+vol_tov), random freq
"""
self.datafeed = LobDataFeed()
dfs = []
if load_obh:
self.clean_obh = self.datafeed.load_clean_obh(file_root=file_root, date=date, stk_name=stk_name,
snapshot_window=self.levels)
dfs.append(self.clean_obh)
if load_vol_tov:
self.vol_tov = self.datafeed.load_vol_tov(file_root=file_root, date=date, stk_name=stk_name)
dfs.append(self.vol_tov)
if load_events:
self.events = self.datafeed.load_events(file_root=file_root, date=date, stk_name=stk_name)
dfs.append(self.events)
# self.trade_details,self.order_details=self.datafeed.load_details(data_root,date,code_dict[stk_name])
data = pd.concat(dfs, axis=1).ffill()
return data
def _calc_features(self, df, level, to_freq=None):
"""
Parameters
----------
df:
original frequency
level
to_freq
Returns
-------
"""
# todo: 时间不连续、不规整,过于稀疏,归一化细节
fe = LobFeatureEngineering()
df = df.groupby(level=0).last()
feature = fe.generate_cross_section(df, level=level)
feature = feature.dropna(how='all')
feature = pd.concat([df, feature], axis=1)
feature.index = pd.to_datetime(feature.index)
feature = feature.sort_index()
# 必须先将clean_obh填充到10ms,否则交易频率是完全不规律的,即可能我只想用5个frame的数据来预测,但很可能用上了十秒的信息
if to_freq is not None:
feature = feature.asfreq(freq=to_freq, method='ffill')
return feature
# testit
def calc_features(self, data, level, to_freq=None) -> list:
"""
将数据划分为4份,每份一小时
:param data: 10ms
:return: 10ms
"""
ltp = LobTimePreprocessor()
# 必须先将数据切分,否则会导致11:30和13:00之间出现跳变
alldatas = ltp.split_by_trade_period(data)
# 不能对alldatas change freq,否则会导致损失数据点
alldatas = [ltp.add_head_tail(cobh, head_timestamp=pd.to_datetime(s),
tail_timestamp=pd.to_datetime(e)) for cobh, (s, e) in
zip(alldatas, config.ranges)]
self.features = [self._calc_features(data, level=level, to_freq=to_freq) for data in alldatas] # 尚未agg
self.features = [ltp.add_head_tail(feature, head_timestamp=pd.to_datetime(s),
tail_timestamp=pd.to_datetime(e)) for feature, (s, e) in
zip(self.features, config.ranges)]
self.features = [feature.fillna(0) for feature in self.features]
return self.features
def scale_data(self, alldatas, stk_name, data_pp):
"""
:param alldatas:
:param stk_name:
:param data_pp: data preprocessor
:return:
"""
Xs = []
for num in range(len(alldatas)):
param = data_pp.sub_illegal_punctuation(str(self.param))
data_pp.load_scaler(scaler_root, FILE_FMT_scaler.format(stk_name, num, param))
X = alldatas[num]
cols = X.columns
index = X.index
X = pd.DataFrame(data_pp.scaler.transform(X), columns=cols, index=index)
Xs.append(X)
return Xs
def match_y(self, Xs: list, features: list, used_timedelta,
pred_timedelta, target: str, frolling=False):
"""
fixme: 需要完善该接口
Parameters
----------
Xs: list
一天中4个小时的数据
features: list
一天中4个小时的特征
used_timedelta
使用多久的数据
pred_timedelta
预测多少秒以后的target
target
class 'Target', ret, mid_p_ret
frolling: default False
原feature是否forward rolling,即frolling使用的是[t-n,t)的数据进行agg。
Returns
-------
"""
logging.warning("deprecated", DeprecationWarning)
logging.warning("请确保正确使用frolling", FutureWarning)
_Xs = []
_ys = []
for X, feature in zip(Xs, features):
start_time = X.index
tar_time = start_time + pred_timedelta
if not frolling:
tar_time += used_timedelta
# 波动率型
if target == Target.vol.name:
...
continue
# return 类型的target
if target == Target.ret.name:
tar_col = LobColTemplate().spot
elif target == Target.mid_p_ret.name:
tar_col = LobColTemplate().mid_price
else:
raise NotImplementedError()
tar = feature[tar_col]
available_time = [True if x in feature.index else False for x in tar_time]
start_time = start_time[available_time]
tar_time = tar_time[available_time]
X = X.loc[start_time]
y = np.log(tar.loc[tar_time] / tar.loc[start_time])
_Xs.append(X)
_ys.append(y)
return _Xs, _ys
def transform_data(self, alldatas, stk_name):
"""
主要是归一化和跳取数据,用于信号生成和回测,无需打乱
:param alldatas:
:return:
"""
warnings.warn(f"{self.transform_data} will be deprecated", DeprecationWarning)
# raise DeprecationWarning(f"{self.transform_data} will be deprecated")
Xs = []
ys = []
for num in range(len(alldatas)):
dp = ShiftDataPreprocessor()
X, y = dp.get_flattened_Xy(alldatas, num, self.target, self.pred_n_steps, self.use_n_steps,
self.drop_current)
param = dp.sub_illegal_punctuation(str(self.param))
dp.load_scaler(scaler_root, FILE_FMT_scaler.format(stk_name, num, param))
cols = X.columns
index = X.index
X = pd.DataFrame(dp.scaler.transform(X), columns=cols, index=index)
X = X.iloc[::self.use_n_steps]
y = y.iloc[::self.use_n_steps]
Xs.append(X)
ys.append(y)
return Xs, ys
def run_bt(self):
"""
仅回测,不处理数据,不训练scalers、模型
Notes
-----
明确进行回测的是哪些股票,哪些日期
"""
self.models = self.load_models(self.model_root, 'general', model_class='automl') # 默认会加载4个时间段的models
# 明确进行回测的是哪些股票,哪些日期
f_dict = defaultdict(list) # {stk_name:(yyyy, mm, dd)}
for date in self.dates:
parts = str(pd.to_datetime(date).date()).split('-')
yyyy = parts[0]
mm = parts[1]
dd = parts[2]
for stk_name in self.stk_names:
self.stk_name = stk_name
f_dict[stk_name].append((yyyy, mm, dd))
f_dict = {k: sorted(list(set(v))) for k, v in f_dict.items()} # 去重
# 读数据
data_dict = defaultdict(lambda: defaultdict(list)) # data_dict={date:{stkname:[data0,data1,data2,data3]}
tar_dict = defaultdict(dict) # data_dict={date:{stkname:tar_data}}
datafeed = LobDataFeed()
for stk_name, date_tuples in f_dict.items():
for yyyy, mm, dd in date_tuples:
update_date(yyyy, mm, dd)
try:
for num in range(4):
feature = datafeed.load_feature(detail_data_root, config.date, stk_name, num)
data_dict[config.date][stk_name].append(feature.dropna(how='all'))
except FileNotFoundError as e:
print("missing feature", stk_name, yyyy, mm, dd)
continue
# target
tar = None
self.alldata[config.date][stk_name] = datafeed.load_clean_obh(detail_data_root, config.date, stk_name,
snapshot_window=use_level,
use_cols=[
str(LobColTemplate('a', 1, 'p')),
str(LobColTemplate('a', 1, 'v')),
str(LobColTemplate('b', 1, 'p')),
str(LobColTemplate('b', 1, 'v')),
str(LobColTemplate().spot)])
temp = self.alldata[config.date][stk_name].asfreq(freq=min_freq, method='ffill')
shift_rows = int(pred_timedelta / min_timedelta) # 预测 pred_timedelta 之后的涨跌幅
if config.target == Target.mid_p_ret.name:
tar = (temp[str(LobColTemplate('a', 1, 'p'))] + temp[str(LobColTemplate('b', 1, 'p'))]) / 2
tar = np.log(tar / tar.shift(shift_rows)) # log ret
elif config.target == Target.ret.name:
tar = temp[LobColTemplate().spot]
tar = np.log(tar / tar.shift(shift_rows)) # log ret
elif config.target == Target.vol.name:
# 波动率
...
tar = LobTimePreprocessor().del_untrade_time(tar, cut_tail=True) # 不能忘
tar_dict[config.date][stk_name] = tar
print("load", detail_data_root, stk_name, config.date)
dp = AggDataPreprocessor()
# X_test_dict = defaultdict(lambda: defaultdict(pd.DataFrame))
# y_test_dict = defaultdict(lambda: defaultdict(pd.Series))
for date, stk_data in list(data_dict.items()):
for stk_name, features in stk_data.items():
self.Xs, self.ys = [], []
for num, feature in enumerate(features):
X, y = dp.align_Xy(feature, tar_dict[date][stk_name],
pred_timedelta=pred_timedelta) # 最重要的是对齐X y
# X_test_dict[stk_name][num] = pd.concat([X_test_dict[stk_name][num], X], axis=0)
# y_test_dict[stk_name][num] = pd.concat([y_test_dict[stk_name][num], y], axis=0)
# scale X data
dp.load_scaler(scaler_root, FILE_FMT_scaler.format(stk_name, num, '_'))
X, = dp.std_scale(X, refit=False)
self.Xs.append(X)
self.ys.append(y)
y_preds = pd.Series()
for num, (X_test, y_test, model) in enumerate(zip(self.Xs, self.ys, self.models)):
y_pred = model.predict(X_test)
y_pred = pd.Series(y_pred, index=y_test.index,
name=f'pred_{self.target}_{self.pred_n_steps * 0.2}s').sort_index()
y_preds = pd.concat([y_preds, y_pred], axis=0)
y_preds = y_preds.sort_index()
# 单个股票的signals concat到所有signals上
signals = self.strategy.generate_signals(y_preds, stk_name=stk_name, threshold=0.001, drift=0)
self.all_signals[date] = pd.concat([self.all_signals[date], signals], axis=0)
print(self.all_signals)
# start trade
# :param signals: dict, {date:all_signals for all stks}
# :param clean_obh_dict: dict, {date:{stk_name:ret <pd.DataFrame>}}
self.broker.load_data(self.alldata)
# todo 需要增加多股票、多日期回测
revenue_dict, ret_dict, aligned_signals_dict = None, None, None
for date in list(data_dict.keys()):
for stk_name in self.stk_names:
signals = self.all_signals[date].sort_index()
# todo 逐个signal进行模拟
# for signal in signals: #(timestamp,stk_name,side,type,price_limit,volume)
# self.broker.execute(signal)
# 批量交易
revenue_dict, ret_dict, aligned_signals_dict = self.broker.batch_execute(signals, use_dates=None,
use_stk_names=None)
stat_revenue = self.statistics.stat_winrate(revenue_dict[date][stk_name],
aligned_signals_dict[date][stk_name]['side_open'],
counterpart=True, params=None)
stat_ret = self.statistics.stat_winrate(ret_dict[date][stk_name],
aligned_signals_dict[date][stk_name]['side_open'],
counterpart=True, params=None)
stat_revenue.to_csv(res_root + f"{date}_{stk_name}_stat_revenue_pred{pred_timedelta}.csv")
stat_ret.to_csv(res_root + f"{date}_{stk_name}_stat_ret_pred{pred_timedelta}.csv")
return revenue_dict, ret_dict, aligned_signals_dict
def run(self):
"""old version
deprecated
:return:
"""
raise DeprecationWarning("run has been deprecated")
for date in self.dates:
for stk_name in self.stk_names:
self.stk_name = stk_name
# 默认会加载4个时间段的models
self.models = self.load_models(self.model_root, 'general', model_class='automl') # 默认会加载4个时间段的models
self.alldata[date][stk_name] = self.load_data(file_root=self.file_root, date=date,
stk_name=stk_name) # random freq
self.alldatas[date][stk_name] = self.calc_features(
self.alldata[date][stk_name], level=use_level, to_freq=min_freq) # min_freq, 10ms
dp = AggDataPreprocessor()
# agg_freq=1min
self.alldatas[date][stk_name] = [dp.agg_features(feature) for feature in self.alldatas[date][stk_name]]
# self.Xs, self.ys = self.transform_data(self.alldatas[date][stk_name],stk_name)
self.Xs = self.scale_data(self.alldatas[date][stk_name], stk_name, data_pp=dp)
self.Xs, self.ys = self.match_y(self.Xs, self.alldatas[date][stk_name],
used_timedelta=timedelta(minutes=int(freq[:-3]) * use_n_steps),
pred_timedelta=timedelta(minutes=int(freq[:-3]) * pred_n_steps),
target=Target.mid_p_ret.name,
frolling=False)
y_preds = pd.Series()
for num, (X_test, y_test, model) in enumerate(zip(self.Xs, self.ys, self.models)):
y_pred = model.predict(X_test)
y_pred = pd.Series(y_pred,
index=X_test.index + timedelta(
milliseconds=int(self.freq[:-2]) * self.pred_n_steps),
name=f'pred_{self.target}_{self.pred_n_steps * 0.2}s').sort_index()
y_preds = pd.concat([y_preds, y_pred], axis=0)
y_preds = y_preds.sort_index()
# 单个股票的signals concat到所有signals上
signals = self.strategy.generate_signals(y_preds, stk_name=stk_name, threshold=0.0008, drift=0)
self.all_signals[date] = pd.concat([self.all_signals[date], signals], axis=0)
print(self.all_signals)
# start trade
# :param signals: dict, {date:all_signals for all stks}
# :param clean_obh_dict: dict, {date:{stk_name:ret <pd.DataFrame>}}
revenue_dict, ret_dict, aligned_signals_dict = None, None, None
self.broker.load_data(self.alldata)
# todo 需要增加多股票、多日期回测
for date in self.dates:
for stk_name in self.stk_names:
signals = self.all_signals[date].sort_index()
# todo 逐个signal进行模拟
# for signal in signals: #(timestamp,stk_name,side,type,price_limit,volume)
# self.broker.execute(signal)
# 批量交易
revenue_dict, ret_dict, aligned_signals_dict = self.broker.batch_execute(signals, date, self.stk_names)
stat_revenue = self.statistics.stat_winrate(revenue_dict[date][stk_name],
aligned_signals_dict[date][stk_name]['side_open'],
counterpart=True, params=None)
stat_ret = self.statistics.stat_winrate(ret_dict[date][stk_name],
aligned_signals_dict[date][stk_name]['side_open'],
counterpart=True, params=None)
stat_revenue.to_csv(res_root + f"{date}_{stk_name}_stat_revenue.csv")
stat_ret.to_csv(res_root + f"{date}_{stk_name}_stat_ret.csv")
return revenue_dict, ret_dict, aligned_signals_dict
class SingleAssetBackTester(BaseTester):
"""
the whole project contains these files:
1. backtester.py: the center and controler of the backtest project.
2. ret.py: the main api to read/save ret from csv/xlsx files, and preprocess them for backtester. I have a lot of assets. And my ret frequency is 0.01s.
3. strategies/base_strategy.py: strategies implementation and signal generation for backtester
4. broker.py: including classes "Order", "Trade", "Broker" and other things you need.
5. observer.py: recorder and logger for backtester
6. statistics.py: result generator and visualization for backtester
References
----------
.. [#] Lean (Quantconnect): https://github.com/QuantConnect/Lean/blob/master/Documentation/2-Overview-Detailed-New.png
.. [#] backtrader
"""
def __init__(self,
use_dates: List[str | int],
target: str,
freq: str,
strategy: Union[LobStrategy, SingleAssetStrategy] = None,
broker: Union[StockBroker] = None,
recorder: Union[LobObserver, BtObserver] = None,
statistics: Union[LobStatistics] = None,
*args,
**kwargs):
super().__init__(*args, **kwargs)
self.strategy = strategy
self.broker = broker
self.recorder = recorder
self.statistics = statistics
self.use_dates = use_dates
self.dates=[]
self.target = target
self.freq = freq
self.stk_names = list()
self.alldata = defaultdict(dict) # {dates:{stk_name:ret}}
self.alldatas = defaultdict(dict) # {dates:{stk_name:[data1,data2,...]}}
# self.all_signals = defaultdict(pd.DataFrame)
self.all_signals = None
self.mkt_data = None
# def load_models(self, model_root, stk_name, model_class):
# model_loader = LobModelFeed(model_root=model_root, stk_name=stk_name, model_class=model_class)
# self.models = model_loader.models
# return self.models
#
# def load_data(self, file_root, date, stk_name,load_obh=True,load_vol_tov=True,load_events=True) -> pd.DataFrame:
# """
#
# :param file_root:
# :param date:
# :param stk_name:
# :return: pd.DataFrame,(clean_obh_dict+vol_tov), random freq
# """
# self.datafeed = LobDataFeed()
# dfs=[]
# if load_obh:
# self.clean_obh = self.datafeed.load_clean_obh(file_root=file_root, date=date, stk_name=stk_name,
# snapshot_window=self.levels)
# dfs.append(self.clean_obh)
# if load_vol_tov:
# self.vol_tov = self.datafeed.load_vol_tov(file_root=file_root, date=date, stk_name=stk_name)
# dfs.append(self.vol_tov)
# if load_events:
# self.events = self.datafeed.load_events(file_root=file_root, date=date, stk_name=stk_name)
# dfs.append(self.events)
# # self.trade_details,self.order_details=self.datafeed.load_details(data_root,date,code_dict[stk_name])
# data = pd.concat(dfs, axis=1).ffill()
# return data
#
# def _calc_features(self, df, level, to_freq=None):
# """
#
# Parameters
# ----------
# df:
# original frequency
# level
# to_freq
#
# Returns
# -------
#
# """
# # todo: 时间不连续、不规整,过于稀疏,归一化细节
# fe = LobFeatureEngineering()
# df = df.groupby(level=0).last()
# feature = fe.generate_cross_section(df, level=level)
# feature=feature.dropna(how='all')
# feature = pd.concat([df, feature], axis=1)
# feature.index = pd.to_datetime(feature.index)
# feature = feature.sort_index()
# # 必须先将clean_obh填充到10ms,否则交易频率是完全不规律的,即可能我只想用5个frame的数据来预测,但很可能用上了十秒的信息
# if to_freq is not None:
# feature = feature.asfreq(freq=to_freq, method='ffill')
# return feature
#
# # testit
# def calc_features(self, data, level, to_freq=None) -> list:
# """
# 将数据划分为4份,每份一小时
# :param data: 10ms
# :return: 10ms
# """
# ltp = LobTimePreprocessor()
# # 必须先将数据切分,否则会导致11:30和13:00之间出现跳变
# alldatas = ltp.split_by_trade_period(data)
# # 不能对alldatas change freq,否则会导致损失数据点
# alldatas = [ltp.add_head_tail(cobh, head_timestamp=pd.to_datetime(s),
# tail_timestamp=pd.to_datetime(e)) for cobh, (s, e) in
# zip(alldatas, config.ranges)]
# self.features = [self._calc_features(data, level=level, to_freq=to_freq) for data in alldatas] # 尚未agg
# self.features = [ltp.add_head_tail(feature, head_timestamp=pd.to_datetime(s),
# tail_timestamp=pd.to_datetime(e)) for feature, (s, e) in
# zip(self.features, config.ranges)]
#
# self.features = [feature.fillna(0) for feature in self.features]
# return self.features
#
# def scale_data(self, alldatas, stk_name, data_pp):
# """
#
# :param alldatas:
# :param stk_name:
# :param data_pp: data preprocessor
# :return:
# """
# Xs = []
# for num in range(len(alldatas)):
# param = data_pp.sub_illegal_punctuation(str(self.param))
# data_pp.load_scaler(scaler_root, FILE_FMT_scaler.format(stk_name, num, param))
#
# X = alldatas[num]
# cols = X.columns
# index = X.index
# X = pd.DataFrame(data_pp.scaler.transform(X), columns=cols, index=index)
#
# Xs.append(X)
#
# return Xs
#
# def match_y(self, Xs: list, features: list, used_timedelta,
# pred_timedelta, target: str, frolling=False):
# """
# fixme: 需要完善该接口
#
# Parameters
# ----------
# Xs: list
# 一天中4个小时的数据
# features: list
# 一天中4个小时的特征
# used_timedelta
# 使用多久的数据
# pred_timedelta
# 预测多少秒以后的target
# target
# class 'Target', ret, mid_p_ret
# frolling: default False
# 原feature是否forward rolling,即frolling使用的是[t-n,t)的数据进行agg。
#
# Returns
# -------
#
# """
# logging.warning("deprecated", DeprecationWarning)
# logging.warning("请确保正确使用frolling", FutureWarning)
#
# _Xs = []
# _ys = []
# for X, feature in zip(Xs, features):
#
# start_time = X.index
# tar_time = start_time + pred_timedelta
# if not frolling:
# tar_time += used_timedelta
# # 波动率型
# if target == Target.vol.name:
# ...
# continue
#
# # return 类型的target
# if target == Target.ret.name:
# tar_col = LobColTemplate().current
# elif target == Target.mid_p_ret.name:
# tar_col = LobColTemplate().mid_price
# else:
# raise NotImplementedError()
# tar = feature[tar_col]
#
# available_time = [True if x in feature.index else False for x in tar_time]
# start_time = start_time[available_time]
# tar_time = tar_time[available_time]
#
# X = X.loc[start_time]
# y = np.log(tar.loc[tar_time] / tar.loc[start_time])
#
# _Xs.append(X)
# _ys.append(y)
#
# return _Xs, _ys
#
# def transform_data(self, alldatas, stk_name):
# """
# 主要是归一化和跳取数据,用于信号生成和回测,无需打乱
# :param alldatas:
# :return:
# """
# warnings.warn(f"{self.transform_data} will be deprecated", DeprecationWarning)
# # raise DeprecationWarning(f"{self.transform_data} will be deprecated")
# Xs = []
# ys = []
# for num in range(len(alldatas)):
# dp = ShiftDataPreprocessor()
#
# X, y = dp.get_flattened_Xy(alldatas, num, self.target, self.pred_n_steps, self.use_n_steps,
# self.drop_current)
# param = dp.sub_illegal_punctuation(str(self.param))
# dp.load_scaler(scaler_root, FILE_FMT_scaler.format(stk_name, num, param))
#
# cols = X.columns
# index = X.index
# X = pd.DataFrame(dp.scaler.transform(X), columns=cols, index=index)
#
# X = X.iloc[::self.use_n_steps]
# y = y.iloc[::self.use_n_steps]
#
# Xs.append(X)
# ys.append(y)
#
# return Xs, ys
def add_market_data(self, data: Union[PandasOHLCDataFeed]):
def split_datafeed(df: Union[PandasOHLCDataFeed]):
data_dict = defaultdict(dict)
temp = df.data.groupby(by=[df.namespace.date, df.namespace.symbol])
for gg in temp:
self.dates.append(str(gg[0][0]))
self.stk_names.append(gg[0][1])
data_dict[str(gg[0][0])][gg[0][1]] = gg[1]
self.dates = sorted(set(self.dates))
self.stk_names = sorted(set(self.stk_names))
return data_dict
self.data_dict = split_datafeed(data)
self.alldatas = self.data_dict
self.mkt_data = data
self.broker.load_data(self.data_dict)
def add_signals(self, signal: Union[PandasSignal]):
self.all_signals = signal
def run(self, save_root='./'):
"""old version
deprecated
:return:
"""
# 单个股票的signals concat到所有signals上
# signals = self.strategy.generate_signals(self.all_signals.data, stk_name=stk_name, threshold=0.0008, drift=1)
# self.all_signals.loc[date] = pd.concat([self.all_signals[date], signals], axis=0)
# print(self.all_signals)
# start trade
# :param signals: dict, {date:all_signals for all stks}
# :param clean_obh_dict: dict, {date:{stk_name:ret <pd.DataFrame>}}
# self.broker.load_data(self.alldata)
for date in self.use_dates:
for stk_name in self.stk_names:
if date not in self.all_signals.index: continue
signals = self.all_signals.loc[date].sort_index()
# todo 逐个signal进行回测,从而实现更精确的回测记录
# for signal in signals: # (timestamp,stk_name,side,type,price_limit,volume)
# self.broker.execute(signal)
# 批量交易
revenue_dict, ret_dict, aligned_signals_dict = self.broker.batch_execute(signals, [date],
self.stk_names,
commission=self.broker.commission)
self.recorder.revenue_dict.update(revenue_dict)
self.recorder.ret_dict.update(ret_dict)
self.recorder.aligned_signals_dict.update(aligned_signals_dict)
self.recorder.res_dict[date][stk_name] = (revenue_dict, ret_dict, aligned_signals_dict)
stat_revenue = self.statistics.stat_winrate(revenue_dict[date][stk_name],
aligned_signals_dict[date][stk_name]['side_open'],
counterpart=True, params=None)
stat_ret = self.statistics.stat_winrate(ret_dict[date][stk_name],
aligned_signals_dict[date][stk_name]['side_open'],
counterpart=True, params=None)
stat_revenue.to_csv(save_root + f"{date}_{stk_name}_stat_revenue.csv")
stat_ret.to_csv(save_root + f"{date}_{stk_name}_stat_ret.csv")
return self.recorder.res_dict
if __name__ == '__main__':
stk_names = ["贵州茅台", "中信证券"]
update_date('2022', '06', '29')
datafeed = LobDataFeed()
strategy = LobStrategy(max_close_timedelta=timedelta(minutes=int(freq[:-3]) * pred_n_steps))
broker = Broker(cash=1e6, commission=1e-3)
observer = LobObserver()
statistics = LobStatistics()
bt = LobBackTester(model_root=model_root,
file_root=detail_data_root,
dates=['2022-06-29'], # todo 确认一致性是否有bug
stk_names=stk_names,
levels=5,
target=Target.ret.name,
freq=freq,
pred_n_steps=pred_n_steps,
use_n_steps=use_n_steps,
drop_current=drop_current,
datafeed=datafeed,
strategy=strategy,
broker=broker,
observer=observer,
statistics=statistics,
)
bt.run_bt() #
# bt.run() #
print()