-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathdata_converter.py
466 lines (401 loc) · 20.4 KB
/
data_converter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
from nuscenes.nuscenes import NuScenes
from pyquaternion import Quaternion
from nuscenes.utils.data_classes import LidarPointCloud
import numpy as np
from open3d import *
from nuscenes.utils.data_io import load_bin_file
from nuscenes.utils.geometry_utils import points_in_box
import os.path as osp
from functools import partial
from utils.points_process import *
from sklearn.neighbors import KDTree
import open3d as o3d
import argparse
INTER_STATIC_POINTS = {}
INTER_STATIC_POSE = {}
INTER_STATIC_LABEL = {}
def parse_args():
parser = argparse.ArgumentParser(description='Data converter arg parser')
parser.add_argument(
'--dataroot',
type=str,
default='./project/data/nuscenes/',
help='specify the root path of dataset')
parser.add_argument(
'--save_path',
type=str,
default='./project/data/nuscenes//occupancy2/',
required=False,
help='specify sweeps of lidar per example')
parser.add_argument(
'--num_sweeps',
type=int,
default=10,
required=False,
help='specify sweeps of lidar per example')
args = parser.parse_args()
return args
def multi_apply(func, *args, **kwargs):
pfunc = partial(func, **kwargs) if kwargs else func
map_results = map(pfunc, *args)
return tuple(map(list, zip(*map_results)))
def align_dynamic_thing(box, prev_instance_token, nusc, prev_points, ego_frame_info):
if prev_instance_token not in ego_frame_info['instance_tokens']:
box_mask = points_in_box(box,
prev_points[:3, :])
return np.zeros((prev_points.shape[0], 0)), np.zeros((0, )), box_mask
box_mask = points_in_box(box,
prev_points[:3, :])
box_points = prev_points[:, box_mask].copy()
prev_bbox_center = box.center
prev_rotate_matrix = box.rotation_matrix
box_points = rotate(box_points, np.linalg.inv(prev_rotate_matrix), center=prev_bbox_center)
target = ego_frame_info['instance_tokens'].index(prev_instance_token)
ego_boxes_center = ego_frame_info['boxes'][target].center
box_points = translate(box_points, ego_boxes_center-prev_bbox_center)
box_points = rotate(box_points, ego_frame_info['boxes'][target].rotation_matrix, center=ego_boxes_center)
box_points_mask = filter_points_in_ego(box_points, ego_frame_info, prev_instance_token)
box_points = box_points[:, box_points_mask]
box_label = np.full_like(box_points[0], nusc.lidarseg_name2idx_mapping[box.name]).copy()
return box_points, box_label, box_mask
def get_frame_info(frame, nusc: NuScenes, gt_from='lidarseg'):
'''
get frame info
return: frame_info (Dict):
'''
sd_rec = nusc.get('sample_data', frame['data']['LIDAR_TOP'])
lidar_path, boxes, _ = nusc.get_sample_data(frame['data']['LIDAR_TOP'])
# lidarseg_labels_filename = os.path.join(nusc.dataroot,
# nusc.get(gt_from, sd_rec)['filename'])
lidarseg_labels_filename = osp.join(nusc.dataroot,
nusc.get(gt_from, frame['data']['LIDAR_TOP'])['filename'])
points_label = np.fromfile(lidarseg_labels_filename, dtype=np.uint8)
pc = LidarPointCloud.from_file(nusc.dataroot+sd_rec['filename'])
# pc = LidarPointCloud.from_file(nusc.dataroot+sd_rec['filename'])
cs_record = nusc.get('calibrated_sensor',
sd_rec['calibrated_sensor_token'])
pose_record = nusc.get('ego_pose', sd_rec['ego_pose_token'])
velocities = np.array(
[nusc.box_velocity(token)[:2] for token in frame['anns']])
velocities = np.concatenate((velocities, np.zeros_like(velocities[:, 0:1])), axis=-1)
velocities = velocities.transpose(1, 0)
instance_tokens = [nusc.get('sample_annotation', token)['instance_token'] for token in frame['anns']]
frame_info = {
'pc': pc,
'token': frame['token'],
'lidar_token': frame['data']['LIDAR_TOP'],
'cs_record': cs_record,
'pose_record': pose_record,
'velocities': velocities,
'lidarseg': points_label,
'boxes': boxes,
'anno_token': frame['anns'],
'instance_tokens': instance_tokens,
'timestamp': frame['timestamp'],
}
return frame_info
def get_intermediate_frame_info(nusc: NuScenes, prev_frame_info, lidar_rec, flag):
intermediate_frame_info = dict()
pc = LidarPointCloud.from_file(nusc.dataroot+lidar_rec['filename'])
intermediate_frame_info['pc'] = pc
intermediate_frame_info['pc'].points = remove_close(intermediate_frame_info['pc'].points)
intermediate_frame_info['lidar_token'] = lidar_rec['token']
intermediate_frame_info['cs_record'] = nusc.get('calibrated_sensor',
lidar_rec['calibrated_sensor_token'])
sample_token = lidar_rec['sample_token']
frame = nusc.get('sample', sample_token)
instance_tokens = [nusc.get('sample_annotation', token)['instance_token'] for token in frame['anns']]
intermediate_frame_info['pose_record'] = nusc.get('ego_pose', lidar_rec['ego_pose_token'])
lidar_path, boxes, _ = nusc.get_sample_data(lidar_rec['token'])
intermediate_frame_info['boxes'] = boxes
intermediate_frame_info['instance_tokens'] = instance_tokens
assert len(boxes) == len(instance_tokens) , print('erro')
return intermediate_frame_info
def intermediate_keyframe_align(nusc: NuScenes, prev_frame_info, ego_frame_info, cur_sample_points, cur_sample_labels):
''' align prev_frame points to ego_frame
return: points (np.array) aligned points of prev_frame
pc_segs (np.array) label of aligned points of prev_frame
'''
prev_frame_info['pc'].points = remove_close(prev_frame_info['pc'].points, (1, 2))
pcs, labels, masks = multi_apply(align_dynamic_thing, prev_frame_info['boxes'], prev_frame_info['instance_tokens'], nusc=nusc, prev_points=prev_frame_info['pc'].points, ego_frame_info=ego_frame_info)
# for box, instance_token in zip(prev_frame_info['boxes'], prev_frame_info['instance_tokens']):
# align_dynamic_thing(box, instance_token, nusc=nusc, prev_points=prev_frame_info['pc'].points, ego_frame_info=ego_frame_info)
masks = np.stack(masks, axis=-1)
masks = masks.sum(axis=-1)
masks = ~(masks>0)
prev_frame_info['pc'].points = prev_frame_info['pc'].points[:, masks]
if prev_frame_info['lidar_token'] in INTER_STATIC_POINTS:
static_points = INTER_STATIC_POINTS[prev_frame_info['lidar_token']].copy()
static_points = prev2ego(static_points, INTER_STATIC_POSE[prev_frame_info['lidar_token']], ego_frame_info)
static_points_label = INTER_STATIC_LABEL[prev_frame_info['lidar_token']].copy()
assert static_points_label.shape[0] == static_points.shape[1], f"{static_points_label.shape, static_points.shape}"
else:
static_points = prev2ego(prev_frame_info['pc'].points, prev_frame_info, ego_frame_info)
static_points_label = np.full_like(static_points[0], -1)
static_points, static_points_label = search_label(cur_sample_points, cur_sample_labels, static_points, static_points_label)
INTER_STATIC_POINTS[prev_frame_info['lidar_token']] = static_points.copy()
INTER_STATIC_LABEL[prev_frame_info['lidar_token']] = static_points_label.copy()
INTER_STATIC_POSE[prev_frame_info['lidar_token']] = {'cs_record': ego_frame_info['cs_record'],
'pose_record': ego_frame_info['pose_record'],
}
pcs.append(static_points)
labels.append(static_points_label)
return np.concatenate(pcs, axis=-1), np.concatenate(labels)
def nonkeykeyframe_align(nusc: NuScenes, prev_frame_info, ego_frame_info, flag='prev', cur_sample_points=None, cur_sample_labels=None):
''' align non keyframe points to ego_frame
return: points (np.array) aligned points of prev_frame
pc_segs (np.array) seg of aligned points of prev_frame
'''
pcs = []
labels = []
start_frame = nusc.get('sample', prev_frame_info['token'])
end_frame = nusc.get('sample', start_frame[flag])
# next_frame_info = get_frame_info(end_frame, nusc)
start_sd_record = nusc.get('sample_data', start_frame['data']['LIDAR_TOP'])
start_sd_record = nusc.get('sample_data', start_sd_record[flag])
# end_sd_record = nusc.get('sample_data', end_frame['data']['LIDAR_TOP'])
# get intermediate frame info
while start_sd_record['token'] != end_frame['data']['LIDAR_TOP']:
intermediate_frame_info = get_intermediate_frame_info(nusc, prev_frame_info, start_sd_record, flag)
pc, label = intermediate_keyframe_align(nusc, intermediate_frame_info, ego_frame_info, cur_sample_points, cur_sample_labels)
start_sd_record = nusc.get('sample_data', start_sd_record[flag])
pcs.append(pc)
labels.append(label)
return np.concatenate(pcs, axis=-1), np.concatenate(labels)
def prev2ego(points, prev_frame_info, income_frame_info, velocity=None, time_gap=0.0):
''' translation prev points to ego frame
'''
# prev_sd_rec = nusc.get('sample_data', prev_frame_info['data']['LIDAR_TOP'])
prev_cs_record = prev_frame_info['cs_record']
prev_pose_record = prev_frame_info['pose_record']
points = transform(points, Quaternion(prev_cs_record['rotation']).rotation_matrix, np.array(prev_cs_record['translation']))
points = transform(points, Quaternion(prev_pose_record['rotation']).rotation_matrix, np.array(prev_pose_record['translation']))
if velocity is not None:
points[:3, :] = points[:3, :] + velocity*time_gap
ego_cs_record = income_frame_info['cs_record']
ego_pose_record = income_frame_info['pose_record']
points = transform(points, Quaternion(ego_pose_record['rotation']).rotation_matrix, np.array(ego_pose_record['translation']), inverse=True)
points = transform(points, Quaternion(ego_cs_record['rotation']).rotation_matrix, np.array(ego_cs_record['translation']), inverse=True)
return points.copy()
def filter_points_in_ego(points, frame_info, instance_token):
'''
filter points in this frame box
'''
index = frame_info['instance_tokens'].index(instance_token)
box = frame_info['boxes'][index]
# print(f"ego box pos {box.center}")
box_mask = points_in_box(box, points[:3, :])
return box_mask
def keyframe_align(prev_frame_info, ego_frame_info):
''' align prev_frame points to ego_frame
return: points (np.array) aligned points of prev_frame
pc_segs (np.array) seg of aligned points of prev_frame
'''
pcs = []
pc_segs = []
lidarseg_prev = prev_frame_info['lidarseg']
ego_vehicle_mask = (lidarseg_prev == 31) | (lidarseg_prev == 0)
lidarseg_prev = lidarseg_prev[~ego_vehicle_mask]
prev_frame_info['pc'].points = prev_frame_info['pc'].points[:, ~ego_vehicle_mask]
# translation prev static points to ego
static_mask = (lidarseg_prev >= 24) & (lidarseg_prev <= 30)
static_points = prev_frame_info['pc'].points[:, static_mask]
static_seg = lidarseg_prev[static_mask]
static_points = prev2ego(static_points, prev_frame_info, ego_frame_info)
pcs.append(static_points.copy())
pc_segs.append(static_seg.copy())
prev_frame_info['pc'].points = prev_frame_info['pc'].points[:, ~static_mask].copy()
lidarseg_prev = lidarseg_prev[~static_mask]
# translation prev moving points to ego
for index_anno in range(len(prev_frame_info['boxes'])):
if prev_frame_info['instance_tokens'][index_anno] not in ego_frame_info['instance_tokens']:
continue
box_mask = points_in_box(prev_frame_info['boxes'][index_anno],
prev_frame_info['pc'].points[:3, :])
box_points = prev_frame_info['pc'].points[:, box_mask].copy()
boxseg_prev = lidarseg_prev[box_mask].copy()
prev_bbox_center = prev_frame_info['boxes'][index_anno].center
prev_rotate_matrix = prev_frame_info['boxes'][index_anno].rotation_matrix
box_points = rotate(box_points, np.linalg.inv(prev_rotate_matrix), center=prev_bbox_center)
target = ego_frame_info['instance_tokens'].index(prev_frame_info['instance_tokens'][index_anno])
ego_boxes_center = ego_frame_info['boxes'][target].center
box_points = translate(box_points, ego_boxes_center-prev_bbox_center)
box_points = rotate(box_points, ego_frame_info['boxes'][target].rotation_matrix, center=ego_boxes_center)
box_points_mask = filter_points_in_ego(box_points, ego_frame_info, prev_frame_info['instance_tokens'][index_anno])
box_points = box_points[:, box_points_mask]
boxseg_prev = boxseg_prev[box_points_mask]
pcs.append(box_points)
pc_segs.append(boxseg_prev)
return np.concatenate(pcs, axis=-1), np.concatenate(pc_segs, axis=-1)
def search_label(points, lidar_seg, intermediate_pcs, intermediate_labels, max_dist=0.5):
unlabel_mask = intermediate_labels == -1
thing_mask = (lidar_seg >= 24) & (lidar_seg <=30)
thing_label = lidar_seg[thing_mask]
thing_points = points[:, thing_mask]
unlabeled_points = intermediate_pcs[:, unlabel_mask]
tree = KDTree(thing_points.transpose(1, 0)[:, :3])
unlabeled_points = unlabeled_points.transpose(1, 0)
dists, inds = tree.query(unlabeled_points[:, :3], k=1)
inds = np.reshape(inds, (-1,))
dists = np.reshape(dists, (-1,))
dists = dists<max_dist
intermediate_labels[unlabel_mask] = np.take_along_axis(thing_label, inds, axis=-1)
return intermediate_pcs[:, dists], intermediate_labels[dists]
def generate_occupancy_data(nusc: NuScenes, cur_sample, num_sweeps, save_path='./occupacy/', gt_from: str = 'lidarseg'):
pcs =[] # for keyframe points
pc_segs = []
intermediate_pcs = [] # # for non keyfrme points
intermediate_labels = []
lidar_data = nusc.get('sample_data',
cur_sample['data']['LIDAR_TOP'])
pc = LidarPointCloud.from_file(nusc.dataroot+lidar_data['filename'])
filename = os.path.split(lidar_data['filename'])[-1]
lidar_sd_token = cur_sample['data']['LIDAR_TOP']
lidarseg_labels_filename = os.path.join(nusc.dataroot,
nusc.get(gt_from, lidar_sd_token)['filename'])
lidar_seg = load_bin_file(lidarseg_labels_filename, type=gt_from)
# align keyframes
count_prev_frame = 0
prev_frame = cur_sample.copy()
while num_sweeps > 0:
if prev_frame['prev'] == '':
break
prev_frame = nusc.get('sample', prev_frame['prev'])
count_prev_frame += 1
if count_prev_frame == num_sweeps:
break
cur_sample_info = get_frame_info(cur_sample, nusc=nusc)
# convert prev keyframe to ego frame
if count_prev_frame > 0:
prev_info = get_frame_info(prev_frame, nusc)
pc_points = None
pc_seg = None
while count_prev_frame > 0:
income_info = get_frame_info(frame =prev_frame, nusc=nusc)
prev_frame = nusc.get('sample', prev_frame['next'])
prev_info = income_info
pc_points, pc_seg = keyframe_align(prev_info, cur_sample_info)
pcs.append(pc_points)
pc_segs.append(pc_seg)
count_prev_frame -= 1
# convert next frame to ego frame
next_frame = cur_sample.copy()
pc_points = None
pc_seg = None
count_next_frame = 0
while num_sweeps > 0:
if next_frame['next'] == '':
break
next_frame = nusc.get('sample', next_frame['next'])
count_next_frame += 1
if count_next_frame == num_sweeps:
break
if count_next_frame > 0:
prev_info = get_frame_info(next_frame, nusc=nusc)
while count_next_frame > 0:
income_info = get_frame_info(frame=next_frame, nusc=nusc)
prev_info = income_info
next_frame = nusc.get('sample', next_frame['prev'])
pc_points, pc_seg = keyframe_align(prev_info, cur_sample_info)
pcs.append(pc_points)
pc_segs.append(pc_seg)
count_next_frame -= 1
pcs = np.concatenate(pcs, axis=-1)
pc_segs = np.concatenate(pc_segs)
pc.points = np.concatenate((pc.points, pcs), axis=-1)
lidar_seg = np.concatenate((lidar_seg, pc_segs))
range_mask = (pc.points[0,:]<= 60) & (pc.points[0,:]>=-60)\
&(pc.points[1,:]<= 60) & (pc.points[1,:]>=-60)\
&(pc.points[2,:]<= 10) & (pc.points[2,:]>=-10)
pc.points = pc.points[:, range_mask]
lidar_seg = lidar_seg[range_mask]
# align nonkeyframe
count_prev_frame = 0
prev_frame = cur_sample.copy()
while num_sweeps > 0:
if prev_frame['prev'] == '':
break
prev_frame = nusc.get('sample', prev_frame['prev'])
count_prev_frame += 1
if count_prev_frame == num_sweeps:
break
cur_sample_info = get_frame_info(cur_sample, nusc=nusc)
# convert prev frame to ego frame
if count_prev_frame > 0:
prev_info = get_frame_info(prev_frame, nusc)
while count_prev_frame > 0:
income_info = get_frame_info(frame =prev_frame, nusc=nusc)
prev_frame = nusc.get('sample', prev_frame['next'])
prev_info = income_info
intermediate_pc, intermediate_label = nonkeykeyframe_align(nusc, prev_info, cur_sample_info, 'next', pc.points, lidar_seg)
intermediate_pcs.append(intermediate_pc)
intermediate_labels.append(intermediate_label)
count_prev_frame -= 1
next_frame = cur_sample.copy()
count_next_frame = 0
while num_sweeps > 0:
if next_frame['next'] == '':
break
next_frame = nusc.get('sample', next_frame['next'])
count_next_frame += 1
if count_next_frame == num_sweeps:
break
if count_next_frame > 0:
prev_info = get_frame_info(next_frame, nusc=nusc)
while count_next_frame > 0:
income_info = get_frame_info(frame =next_frame, nusc=nusc)
prev_info = income_info
next_frame = nusc.get('sample', next_frame['prev'])
intermediate_pc, intermediate_label = nonkeykeyframe_align(nusc, prev_info, cur_sample_info, 'prev', pc.points, lidar_seg)
intermediate_pcs.append(intermediate_pc)
intermediate_labels.append(intermediate_label)
count_next_frame -= 1
intermediate_pcs = np.concatenate(intermediate_pcs, axis=-1)
intermediate_labels = np.concatenate(intermediate_labels)
intermediate_labels = np.reshape(intermediate_labels, (1, -1))
intermediate_pcs = np.concatenate((intermediate_pcs, intermediate_labels), axis=0)
lidar_seg = np.reshape(lidar_seg, (1, -1))
pc.points = np.concatenate((pc.points, lidar_seg), axis=0)
pc.points = np.concatenate((pc.points, intermediate_pcs), axis=1)
# removed too dense point
raw_point = pc.points.transpose(1,0)[:,:3]
fake_colors = pc.points.transpose(1,0)[:,3:]/255
assert pc.points.transpose(1,0)[:,3:].max()<=255
n, _ = fake_colors.shape
fake_colors = np.concatenate((fake_colors, np.zeros((n,1))), axis=1)
pcd=o3d.open3d.geometry.PointCloud()
pcd.points= o3d.open3d.utility.Vector3dVector(raw_point)
pcd.colors = o3d.open3d.utility.Vector3dVector(fake_colors)
pcd_new = o3d.geometry.PointCloud.voxel_down_sample(pcd, 0.2)
new_points = np.asarray(pcd_new.points)
fake_colors = np.asarray(pcd_new.colors)[:,:2]*255
new_points = np.concatenate((new_points, fake_colors), axis=1)
range_mask = (new_points[:,0]<= 60) & (new_points[:,0]>=-60)\
&(new_points[:,1]<= 60) & (new_points[:,1]>=-60)\
&(new_points[:,2]<= 10) & (new_points[:,2]>=-10)
new_points = new_points[range_mask]
new_points = new_points.astype(np.float16)
new_points.tofile(save_path +filename)
return pc.points, lidar_seg
def convert2occupy(dataroot,
save_path, num_sweeps=10,):
if not os.path.exists(save_path):
os.mkdir(save_path)
cnt = 0
nusc = NuScenes(version='v1.0-trainval', dataroot=dataroot, verbose=True)
for scene in nusc.scene:
INTER_STATIC_POINTS.clear()
INTER_STATIC_LABEL.clear()
INTER_STATIC_POSE.clear()
sample_token = scene['first_sample_token']
cur_sample = nusc.get('sample', sample_token)
while True:
cnt += 1
print(cnt)
generate_occupancy_data(nusc, cur_sample, num_sweeps, save_path=save_path)
if cur_sample['next'] == '':
break
cur_sample = nusc.get('sample', cur_sample['next'])
if __name__ == "__main__":
args = parse_args()
convert2occupy(args.dataroot, args.save_path, args.num_sweeps)