-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathsnapkv_utils.py
87 lines (78 loc) · 4.47 KB
/
snapkv_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
import time
import torch.nn.functional as F
import torch.nn as nn
import math
# perform qk calculation and get indices
# this version will not update in inference mode
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class SnapKVCluster():
def __init__(self, window_size = 64, max_capacity_prompt = 256 + 64, kernel_size = 5, pooling = 'avgpool'):
self.window_size = window_size
self.max_capacity_prompt = max_capacity_prompt
assert self.max_capacity_prompt - self.window_size > 0
self.kernel_size = kernel_size
self.pooling = pooling
def reset(self, window_size = 64, max_capacity_prompt = 256 + 64, kernel_size = 5, pooling = 'avgpool'):
self.window_size = window_size
self.max_capacity_prompt = max_capacity_prompt
assert self.max_capacity_prompt - self.window_size > 0
self.kernel_size = kernel_size
self.pooling = pooling
def update_kv(self, key_states, query_states, value_states, attention_mask, num_key_value_groups):
# check if prefix phase
assert key_states.shape[-2] == query_states.shape[-2]
bsz, num_heads, q_len, head_dim = query_states.shape
if q_len < self.max_capacity_prompt:
return key_states, value_states
else:
attn_weights = torch.matmul(query_states[..., -self.window_size:, :], key_states.transpose(2, 3)) / math.sqrt(head_dim)
mask = torch.full((self.window_size, self.window_size), torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
mask_cond = torch.arange(mask.size(-1), device=attn_weights.device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(attn_weights.device)
attention_mask = mask[None, None, :, :]
attn_weights[:, :, -self.window_size:, -self.window_size:] += attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights_sum = attn_weights[:, :, -self.window_size:, : -self.window_size].sum(dim = -2)
if self.pooling == 'avgpool':
attn_cache = F.avg_pool1d(attn_weights_sum, kernel_size = self.kernel_size, padding=self.kernel_size//2, stride=1)
elif self.pooling == 'maxpool':
attn_cache = F.max_pool1d(attn_weights_sum, kernel_size = self.kernel_size, padding=self.kernel_size//2, stride=1)
else:
raise ValueError('Pooling method not supported')
indices = attn_cache.topk(self.max_capacity_prompt - self.window_size, dim=-1).indices
indices = indices.unsqueeze(-1).expand(-1, -1, -1, head_dim)
k_past_compress = key_states[:, :, :-self.window_size, :].gather(dim = 2, index = indices)
v_past_compress = value_states[:, :, :-self.window_size, :].gather(dim = 2, index = indices)
k_cur = key_states[:, :, -self.window_size:, :]
v_cur = value_states[:, :, -self.window_size:, :]
key_states = torch.cat([k_past_compress, k_cur], dim = 2)
value_states = torch.cat([v_past_compress, v_cur], dim = 2)
return key_states, value_states
def init_snapkv(self):
if not hasattr(self, "kv_cluster"):
if not hasattr(self.config, 'window_size'):
self.config.window_size = 32
if not hasattr(self.config, 'max_capacity_prompt'):
self.config.max_capacity_prompt = 2048
if not hasattr(self.config, 'kernel_size'):
self.config.kernel_size = 5
if not hasattr(self.config, 'pooling'):
self.config.pooling = 'avgpool'
self.kv_cluster = SnapKVCluster(
window_size = self.config.window_size,
max_capacity_prompt = self.config.max_capacity_prompt,
kernel_size = self.config.kernel_size,
pooling = self.config.pooling
)