-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspeech_optuna.py
395 lines (321 loc) · 16.8 KB
/
speech_optuna.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
from joblib import Parallel, delayed
from tqdm import tqdm
import numpy as np
from scipy import sparse, stats
from numpy import random
from matplotlib import pyplot as plt
SEED = 923984
# load dataset using torchaudio
from sklearn.model_selection import StratifiedShuffleSplit
from torchaudio.datasets import VoxCeleb1Identification, SPEECHCOMMANDS
from torch.utils.data import ConcatDataset, random_split, DataLoader
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
print("Loading SPeechcommands")
dataset_name = "SPEECHCOMMANDS"
dataset_train = SPEECHCOMMANDS(root="datasets/", download=True, subset="training")
dataset_val = SPEECHCOMMANDS(root="datasets/", download=True, subset="validation")
sampling_rate = dataset_train[0][1]
print("Concatenating datasets")
dataset = ConcatDataset([dataset_train, dataset_val])
def process_sample(sample):
X = sample[0][0].numpy().reshape(-1, 1)
Y = sample[2]
group = sample[3]
return X, Y, group
results = Parallel(n_jobs=-1)(delayed(process_sample)(sample) for sample in tqdm(dataset))
X_train_raw, Y_train_raw, groups = zip(*results)
X_train_raw = list(X_train_raw)
Y_train_raw = list(Y_train_raw)
groups = list(groups)
is_multivariate = False
use_spectral_representation = False
is_instances_classification = True
le = LabelEncoder()
Y_train_raw = le.fit_transform(Y_train_raw).reshape(-1, 1)
# One-hot encode the labels
ohe = OneHotEncoder(sparse_output=False)
Y_train_raw = ohe.fit_transform(Y_train_raw.reshape(-1, 1))
from reservoir.activation_functions import tanh, heaviside, sigmoid
# the activation function choosen for the rest of the experiment
# activation_function = lambda x : sigmoid(2*(x-0.5))tanh(x)
activation_function = lambda x : tanh(x)
plt.plot(np.linspace(0, 3, 100), activation_function(np.linspace(0, 3, 100)))
plt.grid()
import math
# Cross validation
from sklearn.model_selection import StratifiedKFold, TimeSeriesSplit, StratifiedGroupKFold
from datasets.preprocessing import flexible_indexing
#Preprocessing
from datasets.multivariate_generation import generate_multivariate_dataset, extract_peak_frequencies
from sklearn.preprocessing import MinMaxScaler
from datasets.preprocessing import scale_data
from datasets.preprocessing import add_noise, duplicate_data
# Define noise parameter
noise_std = 0.001
nb_splits=3
if is_instances_classification:
if groups is None:
splits = StratifiedKFold(n_splits=nb_splits, shuffle=True, random_state=SEED).split(X_train_raw, np.argmax(Y_train_raw, axis=1))
else:
splits = StratifiedGroupKFold(n_splits=nb_splits, shuffle=True, random_state=SEED).split(X_train_raw, np.argmax(Y_train_raw, axis=1), groups)
else: #prediction
splits = TimeSeriesSplit(n_splits=nb_splits).split(X_train_raw)
data_type = "normal" # "normal" ou "noisy"
X_pretrain = []
X_pretrain_noisy = []
X_train = []
X_train_noisy = []
X_val = []
X_val_noisy = []
X_pretrain_band = []
X_pretrain_band_noisy = []
X_train_band = []
X_train_band_noisy = []
X_val_band = []
X_val_band_noisy = []
Y_train = []
Y_val = []
WINDOW_LENGTH = 10
for i, (train_index, val_index) in enumerate(splits):
x_train = flexible_indexing(X_train_raw, train_index)
x_val = flexible_indexing(X_train_raw, val_index)
Y_train.append(flexible_indexing(Y_train_raw, train_index))
Y_val.append(flexible_indexing(Y_train_raw, val_index))
# SPLITS
if is_multivariate:
x_train_band, x_val_band = x_train, x_val
del x_train, x_val
# PREPROCESSING
freq_train_data = x_train_band if is_multivariate else x_train
flat_train_data = np.concatenate(freq_train_data, axis=0) if is_instances_classification else freq_train_data
peak_freqs = extract_peak_frequencies(flat_train_data, sampling_rate, smooth=True, window_length=WINDOW_LENGTH, threshold=1e-5, nperseg=1024, visualize=False)
if use_spectral_representation == True:
if is_multivariate==False:
raise ValueError("Cannot use spectral representation if it's not multivariate !")
if not is_multivariate:
x_train_band = generate_multivariate_dataset(
x_train, sampling_rate, is_instances_classification, peak_freqs, spectral_representation="stft", hop=100
)
x_val_band = generate_multivariate_dataset(
x_val, sampling_rate, is_instances_classification, peak_freqs, spectral_representation="stft", hop=100
)
elif is_multivariate and not use_spectral_representation:
x_train_band = generate_multivariate_dataset(
x_train, sampling_rate, is_instances_classification, peak_freqs, spectral_representation=None, hop=100
)
x_val_band = generate_multivariate_dataset(
x_val, sampling_rate, is_instances_classification, peak_freqs, spectral_representation=None, hop=100
)
else:
print("Data is already spectral, nothing to do")
if not is_multivariate:
scaler_x_uni = MinMaxScaler(feature_range=(0, 1))
x_train, x_val, _ = scale_data(x_train, x_val, None, scaler_x_uni, is_instances_classification)
X_train.append(x_train)
X_val.append(x_val)
scaler_multi = MinMaxScaler(feature_range=(0, 1))
x_train_band, x_val_band, _ = scale_data(x_train_band, x_val_band, None, scaler_multi, is_instances_classification)
X_train_band.append(x_train_band)
X_val_band.append(x_val_band)
# NOISE
if data_type == "noisy":
if is_instances_classification:
# UNI
if not is_multivariate:
x_train_noisy=[add_noise(instance, noise_std) for instance in x_train]
X_train_noisy.append([add_noise(instance, noise_std) for instance in x_train])
X_val_noisy.append([add_noise(instance, noise_std) for instance in x_val])
# MULTI
x_train_band_noisy=[add_noise(instance, noise_std) for instance in x_train_band]
X_train_band_noisy.append(x_train_band_noisy)
X_val_band_noisy.append([add_noise(instance, noise_std) for instance in x_val_band])
else: #if prediction
# UNI
if not is_multivariate:
x_train_noisy=add_noise(x_train, noise_std)
X_train_noisy.append(x_train_noisy)
X_val_noisy.append(add_noise(x_val, noise_std))
# MULTI
x_train_band_noisy=add_noise(x_train_band, noise_std)
X_train_band_noisy.append(x_train_band_noisy)
X_val_band_noisy.append(add_noise(x_val_band, noise_std))
# Define the number of instances you want to select
x_size = len(x_train_band) if is_multivariate else len(x_train)
num_samples_for_pretrain = 500 if x_size >= 500 else x_size
indices = np.random.choice(x_size, num_samples_for_pretrain, replace=False)
# Defining pretrain
if data_type == "noisy":
if not is_multivariate:
X_pretrain_noisy.append(np.array(x_train_noisy, dtype=object)[indices].flatten())
X_pretrain_band_noisy.append(np.array(x_train_band_noisy, dtype=object)[indices])
if not is_multivariate:
X_pretrain.append(np.array(x_train, dtype=object)[indices].flatten())
X_pretrain_band.append(np.array(x_train_band, dtype=object)[indices])
#Pretraining
from reservoir.reservoir import init_matrices
from connexion_generation.hag import run_algorithm
from scipy import sparse
# Evaluating
from performances.esn_model_evaluation import train_model_for_classification, predict_model_for_classification, compute_score
from performances.esn_model_evaluation import train_model_for_prediction, init_nvar_model, init_reservoir_model, init_ip_reservoir_model
# score for prediction
start_step = 30
end_step = 500
SLICE_RANGE = slice(start_step, end_step)
RESERVOIR_SIZE = 500
nb_jobs_per_trial = 8
function_name = "ip" # "desp" ou "hadsp", "random", "random_ei", "ip", or "nvar"
variate_type = "multi" # "multi" ou "uni"
if variate_type == "uni" and is_multivariate:
raise ValueError(f"Invalid variable type: {variate_type}")
def objective(trial):
# Suggest values for the parameters you want to optimize
# COMMON
ridge = trial.suggest_int('ridge', -15, 1)
RIDGE_COEF = 10 ** ridge
if function_name != "nvar":
network_size = trial.suggest_int('network_size', RESERVOIR_SIZE, RESERVOIR_SIZE)
input_scaling = trial.suggest_float('input_scaling', 0.01, 0.2, step=0.005)
bias_scaling = trial.suggest_float('bias_scaling', 0, 0.2, step=0.005)
leaky_rate = trial.suggest_float('leaky_rate', 1, 1)
input_connectivity = trial.suggest_float('input_connectivity', 1, 1)
min_window_size = sampling_rate / np.max(np.hstack(peak_freqs))
max_window_size = sampling_rate / np.min(np.hstack(peak_freqs))
# HADSP
if function_name == "hadsp":
target_rate = trial.suggest_float('target_rate', 0.5, 1, step=0.01)
rate_spread = trial.suggest_float('rate_spread', 0.01, 0.4, step=0.005)
method = trial.suggest_categorical("method", ["random", "pearson"])
# DESP
elif function_name == "desp":
variance_target = trial.suggest_float('variance_target', 0.001, 0.02, step=0.001)
variance_spread = trial.suggest_float('variance_spread', 0.001, 0.05, step=0.002)
intrinsic_saturation = trial.suggest_float('intrinsic_saturation', 0.8, 0.98, step=0.02)
intrinsic_coef = trial.suggest_float('intrinsic_coef', 0.8, 0.98, step=0.02)
method = trial.suggest_categorical("method", ["pearson"])
elif function_name == "random" or function_name == "random_ei":
connectivity = trial.suggest_float('connectivity', 0, 1)
sr = trial.suggest_float('spectral_radius', 0.4, 1.6, step=0.01)
elif function_name == "ip":
connectivity = trial.suggest_float('connectivity', 0, 1)
sr = trial.suggest_float('spectral_radius', 0.4, 1.6, step=0.01)
mu = trial.suggest_float('mu', 0, 1)
sigma = trial.suggest_float('sigma', 0, 1)
elif function_name == "nvar":
delay = trial.suggest_int('delay', 1, 10)
strides = trial.suggest_int('strides', 1, 2)
max_order, network_size = find_optimal_order(delay, common_size, strides, RESERVOIR_SIZE, 4)
order = trial.suggest_int('order', 1, max_order)
network_size = trial.suggest_int('number_parameters', network_size, network_size)
print(delay, strides, order)
else:
raise ValueError(f"Invalid function name: {function_name}")
if function_name == "hadsp" or function_name == "desp":
connectivity = trial.suggest_float('connectivity', 0, 0)
weight_increment = trial.suggest_float('weight_increment', 0.001, 0.1, step=0.001)
max_partners = trial.suggest_int('max_partners', 10, 20)
if is_instances_classification:
use_full_instance = trial.suggest_categorical('use_full_instance', [True, False])
else:
use_full_instance = False
TIME_INCREMENT = trial.suggest_int('time_increment', int(min_window_size + 1),
100) # int(min_window_size+1) or int(max_window_size)
max_increment_span = int(max_window_size) if int(max_window_size) - 100 < 0 else int(max_window_size) - 100
time_increment_span = trial.suggest_int('time_increment_span', 0, max_increment_span)
MAX_TIME_INCREMENT = TIME_INCREMENT + time_increment_span # int(max_window_size) or None or TIME_INCREMENT
try:
# CROSS-VALIDATION METHODS
total_score = 0
for i in range(nb_splits):
common_index = 1
if is_instances_classification:
common_size = X_train_band[i][0].shape[common_index]
else:
common_size = X_train_band[i].shape[common_index]
# We want the size of the reservoir to be at least network_size
K = math.ceil(network_size / common_size)
n = common_size * K
pretrain_data = X_pretrain_band[i]
train_data = X_train_band[i] # X_train_band_noisy_duplicated or X_train_band_duplicated
val_data = X_val_band_noisy[i] if data_type == "noisy" else X_val_band[i]
# UNSUPERVISED PRETRAINING
if function_name == "random_ei":
Win, W, bias = init_matrices(n, input_connectivity, connectivity, K, w_distribution=stats.uniform(-1, 1),
seed=random.randint(0, 1000))
bias *= bias_scaling
Win *= input_scaling
elif function_name == "nvar":
pass
else:
Win, W, bias = init_matrices(n, input_connectivity, connectivity, K, seed=random.randint(0, 1000))
bias *= bias_scaling
Win *= input_scaling
if function_name == "hadsp":
W, (_, _, _) = run_algorithm(W, Win, bias, leaky_rate, activation_function, pretrain_data, TIME_INCREMENT,
weight_increment,
target_rate, rate_spread, function_name,
is_instance=is_instances_classification, use_full_instance=use_full_instance,
max_increment=MAX_TIME_INCREMENT, max_partners=max_partners, method=method,
n_jobs=nb_jobs_per_trial)
elif function_name == "desp":
W, (_, _, _) = run_algorithm(W, Win, bias, leaky_rate, activation_function, pretrain_data, TIME_INCREMENT,
weight_increment,
variance_target, variance_spread, function_name,
is_instance=is_instances_classification, use_full_instance=use_full_instance,
max_increment=MAX_TIME_INCREMENT, max_partners=max_partners, method=method,
intrinsic_saturation=intrinsic_saturation, intrinsic_coef=intrinsic_coef,
n_jobs=nb_jobs_per_trial)
elif function_name in ["random", "random_ei", "ip"]:
eigen = sparse.linalg.eigs(W, k=1, which="LM", maxiter=W.shape[0] * 20, tol=0.1, return_eigenvectors=False)
W *= sr / max(abs(eigen))
elif function_name == "nvar":
pass
else:
raise ValueError(f"Invalid function: {function_name}")
# TRAINING and EVALUATION
if function_name == "nvar":
reservoir, readout = init_nvar_model(delay, order, strides, ridge_coef=RIDGE_COEF)
elif function_name == "ip":
reservoir, readout = init_ip_reservoir_model(W, Win, bias, mu, sigma, leaky_rate, activation_function,
ridge_coef=RIDGE_COEF)
else:
reservoir, readout = init_reservoir_model(W, Win, bias, leaky_rate, activation_function,
ridge_coef=RIDGE_COEF)
if is_instances_classification:
mode = "sequence-to-vector"
train_model_for_classification(reservoir, readout, X_train_band[1], Y_train[1], n_jobs=nb_jobs_per_trial,
mode=mode)
Y_pred = predict_model_for_classification(reservoir, readout, val_data, n_jobs=nb_jobs_per_trial, mode=mode)
score = compute_score(Y_pred, Y_val[i], is_instances_classification)
else:
esn = train_model_for_prediction(reservoir, readout, train_data, Y_train[i])
Y_pred = esn.run(val_data, reset=False)
score = compute_score(Y_pred, Y_val[i], is_instances_classification)
total_score += score
average_score = total_score / nb_splits # Average the score
except np.linalg.LinAlgError:
raise optuna.exceptions.TrialPruned()
return average_score
import optuna
from optuna.samplers import TPESampler
import re
print("Start optuna")
def camel_to_snake(name):
str1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
return re.sub('([a-z0-9])([A-Z])', r'\1_\2', str1).lower()
url= "sqlite:///optuna_" + camel_to_snake(dataset_name) + "_db.sqlite3"
print(url)
storage = optuna.storages.RDBStorage(
url=url,
engine_kwargs={"pool_size": 20, "connect_args": {"timeout": 10}},
)
study_name = function_name + "_" + dataset_name + "_" + data_type + "_" + variate_type
print(study_name)
direction = "maximize" if is_instances_classification else "minimize"
sampler = TPESampler()
def optimize_study(n_trials):
study = optuna.create_study(storage=storage, sampler=sampler, study_name=study_name, direction=direction, load_if_exists=True)
study.optimize(objective, n_trials=n_trials)
N_TRIALS = 100
# Call the function directly without joblib parallelization
optimize_study(N_TRIALS)