-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcivCities.go
397 lines (353 loc) · 12 KB
/
civCities.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
package genworldvoronoi
import (
"log"
"math"
"github.com/Flokey82/genworldvoronoi/geo"
)
// GetCity returns the city at the given region / with the given ID.
func (m *Civ) GetCity(r int) *City {
for _, c := range m.Cities {
if c.ID == r {
return c
}
}
return nil
}
func (m *Civ) getExistingCities() []*City {
var cities []*City
for _, c := range m.Cities {
if c.Founded <= m.History.GetYear() {
cities = append(cities, c)
}
}
return cities
}
func (m *Civ) ageCities() {
// HACK: Age city populations.
// TODO: Instead we should spawn the cities from the capitals.
// Also, the theoretical population should be based on the
// economic potential of the region, the type of settlement,
// and the time of settlement.
cultureFunc := m.getCultureFunc()
gDisFunc := m.Geo.GetGeoDisasterFunc()
// Get the year when the last region was settled.
_, maxSettled := minMax64(m.Settled)
// Reset the year to 0.
m.Geo.Calendar.SetYear(0)
knownCities := len(m.Cities)
for year := int64(0); year < maxSettled; year++ {
// Age cities that exist at this given year.
for _, c := range m.getExistingCities() {
// if c.Founded == year {
// // If the city was just founded this year, we generate
// // a random population.
// m.addNToCity(c, c.Population, cultureFunc)
// }
// Age the city.
m.tickCityDays(c, gDisFunc, cultureFunc, 365)
}
// Update attractiveness, agricultural potential, and resource potential
// for new cities.
if len(m.Cities) > knownCities {
// TODO: Only update new regions until we have climate change?
m.calculateCitiesStats(m.Cities[knownCities:])
knownCities = len(m.Cities)
}
// Recalculate economic potential.
m.calculateEconomicPotential()
// var totalPeople int
// for _, c := range m.getExistingCities() {
// totalPeople += len(c.People)
// }
// log.Printf("Total people: %d", totalPeople)
// Advance year.
m.Geo.Calendar.TickYear()
log.Printf("Aged cities to %d/%d\n", year, maxSettled)
// Age population.
// TODO: Would it make more sense to age the population
// per city? Or per region?
// m.People = m.tickPeople(m.People, 356, cultureFunc)
}
}
func (m *Civ) calculateEconomicPotential() {
// TODO: Cities should have several values
// Some are static, some are dynamic.
//
// Static:
//
// Static values are based on the region and are not affected by
// the population.
//
// - Local resources
// metals, food, etc.
// - Arable land score
// how much land is arable
// - Climate
// how attractive is the climate for settlement
// - Access to water
//
// Dynamic:
//
// This is based on the population, which directly impacts the
// maximum distance from which resources can be gathered,
// and the number of cities we can trade with.
//
// - Trade with nearby cities
// - Nearby resources
//
// Other interesting values to consider:
// culture, is capital, etc.
// We only consider cities that are founded prior or in the current year.
cities := m.getExistingCities()
// Calculate the analog of distance between regions by taking the surface
// of a sphere with radius 1 and dividing it by the number of regions.
// The square root will work as a somewhat sensible approximation of
// distance.
distRegion := math.Sqrt(4 * math.Pi / float64(m.SphereMesh.NumRegions))
// Calculate the base radius in which we can find trade partners.
var tradeRadius []float64
for _, c := range cities {
// The base radius is dependent on the population.
// ... allow for at least two regions distance.
radius := c.radius() + 2*distRegion
tradeRadius = append(tradeRadius, radius)
}
economicPotential := make([]float64, len(cities))
for i, c := range cities {
economicPotential[i] = c.PotentialResources + c.PotentialAgricultural
}
// Now we go through all the cities, and see if they might be able to
// trade with each other. This way they can profit from each other's
// resources.
//
// In the future we make this dependent on geographic features, where
// mountains or the sea might be a barrier.
//
// TODO: This should in particular also take in account what kind of
// resources are available and which are needed, so we would trade
// only if we have benefits from it. This would also mean that far
// away mining towns might profit from trade.
tradePotential := make([]float64, len(cities))
for i, c := range cities {
// Calculate the distance field of all cities to the current city.
if c.Population == 0 {
continue
}
// Loop through all cities and check if we can trade with them.
for j, c2 := range cities {
// We don't trade with ourselves.
if i == j || c2.Population == 0 {
continue
}
// The trade radius is the sum of the two cities' radius times their economic potential.
radius := tradeRadius[i]*(1+economicPotential[i]) + tradeRadius[j]*(1+economicPotential[j])
// If the distance is within the radius, we can trade.
// However, if the other city has a higher economic potential,
// we profit less from the trade.
// TODO: Switch this to population size?
// the closer we are, the more economic potential we have (up to 20%).
dist := m.GetDistance(c.ID, c2.ID)
if dist <= radius {
if economicPotential[j] > economicPotential[i] {
// We don't profit as much from the trade (up to 15%).
tradePotential[i] += economicPotential[i] * (1 - dist/radius) * 0.15
} else {
// We profit more from the trade (up to 20%).
tradePotential[i] += economicPotential[j] * (1 - dist/radius) * 0.2
}
}
}
}
// DEBUG: Count the number of cities in range.
// Loop through all cities and check if we can trade with them.
for i, c := range cities {
var tradePartners []int
for j, c2 := range cities {
if i == j {
continue // We don't trade with ourselves.
}
dist := m.GetDistance(c.ID, c2.ID)
if dist <= tradeRadius[i] {
tradePartners = append(tradePartners, c2.ID)
}
}
c.TradePartners = tradePartners
}
// Now normalize trade potential.
if _, maxTrade := minMax(tradePotential); maxTrade > 0 {
for i := range cities {
tradePotential[i] /= maxTrade
}
}
// Assign the economic potential.
for i, c := range cities {
c.PotentialEconomic = economicPotential[i] + tradePotential[i]
c.PotentialTrade = tradePotential[i]
}
}
func (m *Civ) calculateCitiesStats(cities []*City) {
// Calculate the stats of all cities.
m.calculateAttractiveness(cities)
m.calculateAgriculturalPotential(cities)
m.calculateResourcePotential(cities)
}
func (m *Civ) calculateAttractiveness(cities []*City) {
// Calculate the attractiveness of the supplied cities.
attrFunc := m.getAttractivenessFunc()
for _, c := range cities {
c.Attractiveness = attrFunc(c.ID)
}
}
func (m *Civ) calculateAgriculturalPotential(cities []*City) {
// Calculate the agricultural potential of the supplied cities.
fitnessArableFunc := m.GetFitnessArableLand()
for _, c := range cities {
if agrPotential := fitnessArableFunc(c.ID); agrPotential > 0 {
c.PotentialAgricultural = agrPotential
}
}
}
func (m *Civ) calculateResourcePotential(cities []*City) {
// Now get the resource potential of all cities.
calcResourceValues := func(res []byte) {
for _, c := range cities {
// Sum up the normalized resource values.
c.PotentialResources += float64(geo.SumResources(res[c.ID])) / 36 // 36 is the maximum value.
}
}
// Reset the resource potential.
for _, c := range cities {
c.PotentialResources = 0
}
// Calculate the resource potential for each resource.
calcResourceValues(m.Metals)
calcResourceValues(m.Gems)
calcResourceValues(m.Stones)
calcResourceValues(m.Wood)
calcResourceValues(m.Various)
}
func (m *Civ) getAttractivenessFunc() func(int) float64 {
// The attractiveness of a region is dependent on the following factors:
// - Climate and elevation
// - Distance to water (ocean, river, lake)
// - Arable land (self-sufficiency)
climateFitnessFunc := m.GetFitnessClimate()
arableLandFitnessFunc := m.GetFitnessArableLand()
proximityToWaterFitnessFunc := m.GetFitnessProximityToWater()
return func(regionID int) float64 {
// The attractiveness is the average of the fitness functions.
return (climateFitnessFunc(regionID) + arableLandFitnessFunc(regionID) + proximityToWaterFitnessFunc(regionID)) / 3
}
}
// CalcCityScore calculates the fitness value for settlements for all regions.
//
// 'sf': Fitness function for scoring a region.
// 'distSeedFunc': Returns a number of regions from which we maximize the distance.
func (m *Civ) CalcCityScore(sf func(int) float64, distSeedFunc func() []int) []float64 {
sfCity := func(r int) float64 {
// If we are below (or at) sea level, or we are in a pool of water,
// assign lowest score and continue.
if m.Elevation[r] <= 0 || m.Waterpool[r] > 0 {
return -1.0
}
return sf(r)
}
return m.CalcFitnessScore(sfCity, distSeedFunc)
}
func (m *Civ) CalcCityScoreWithDistanceField(sf func(int) float64, regDistanceC []float64) []float64 {
sfCity := func(r int) float64 {
// If we are below (or at) sea level, or we are in a pool of water,
// assign lowest score and continue.
if m.Elevation[r] <= 0 || m.Waterpool[r] > 0 {
return -1.0
}
return sf(r)
}
return m.CalcFitnessScoreWithDistanceField(sfCity, regDistanceC)
}
func (m *Civ) getFitnessTradingTowns() func(int) float64 {
// TODO: Fix this.
// I think this function should avoid the penalty wrt.
// proximity to towns of other types.
tradeRoutes, connecting := m.GetTradeRoutes()
m.TradeRoutes = tradeRoutes
return func(r int) float64 {
return float64(len(connecting[r]))
}
}
func (m *Civ) getFitnessCityDefault() func(int) float64 {
_, maxFlux := minMax(m.Flux)
steepness := m.GetSteepness()
// WARNING: Using this will prevent us from using the fitness function concurrently.
out_r := make([]int, 0, 8)
return func(r int) float64 {
// If we are below (or at) sea level, or we are in a pool of water,
// assign lowest score and continue.
if m.Elevation[r] <= 0 || m.Waterpool[r] > 0 {
return -1.0
}
// Visit all neighbors and modify the score based on their properties.
var hasWaterBodyBonus bool
nbs := m.SphereMesh.R_circulate_r(out_r, r)
// Initialize fitness score with the normalized flux value.
// This will favor placing cities along (and at the end of)
// large rivers.
score := math.Sqrt(m.Flux[r] / maxFlux)
for _, nb := range nbs {
// Add bonus if near ocean or lake.
if m.IsRegBelowOrAtSeaLevelOrPool(nb) {
// We only apply this bonus once.
if hasWaterBodyBonus {
continue
}
// If a neighbor is below (or at) sea level, or a lake,
// we increase the fitness value and reduce it by a fraction,
// depending on the size of the lake or ocean it is part of.
//
// TODO: Improve this.
// If nb is part of a waterbody (ocean) or lake, we reduce the score by a constant factor.
// The larger the waterbody/lake, the smaller the penalty, which will favor larger waterbodies.
if wbSize := m.GetRegLakeOrWaterBodySize(nb); wbSize > 0 {
hasWaterBodyBonus = true
score += 0.55 * (1 - 1/(float64(wbSize)+1e-9))
}
} else {
// If the sourrounding terrain is flat, we get a bonus.
stp := steepness[nb]
score += 0.5 * (1.0 - stp*stp) / float64(len(nbs))
}
// TODO:
// - Consider biome
// - Consider sediment/fertility of land.
// - Add bonus for mountain proximity (mines, resources)
}
// The steeper the terrain, the less likely it is to be settled.
// TODO: Bonus for trade routes.
stp := steepness[r]
score *= 1.0 - (stp * stp)
return score
}
}
func (m *Civ) getFitnessProximityToCities(except ...TownType) func(int) float64 {
var cities []int
exceptMap := make(map[TownType]bool)
for _, t := range except {
exceptMap[t] = true
}
for _, c := range m.Cities {
if !exceptMap[c.Type] {
cities = append(cities, c.ID)
}
}
distCities := m.AssignDistanceField(cities, make(map[int]bool))
_, maxDist := minMax(distCities)
if maxDist == 0 {
maxDist = 1
}
return func(r int) float64 {
if distCities[r] == 0 {
return 0
}
return 1 - float64(distCities[r])/maxDist
}
}