-
Notifications
You must be signed in to change notification settings - Fork 158
/
03_tutorial_NetworkTrainingKeras.py
447 lines (354 loc) · 16.4 KB
/
03_tutorial_NetworkTrainingKeras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
# coding: utf-8
# # Visualizing the training of Neural Networks with Keras
# Example code for the lecture series "Machine Learning for Physicists" by Florian Marquardt
#
# Lecture 3, Tutorials
#
# See https://machine-learning-for-physicists.org and the current course website linked there!
# This notebook shows how to:
# - visualize the training of neural networks using keras
#
# The networks have 2 input and 1 output neurons, but arbitrarily many hidden layers, and also you can choose the activation functions
#
# This is essentially an extension of the lecture-2 training notebook, but now using keras instead of pure python.
# ### Imports: numpy and matplotlib and keras
# In[1]:
# keras: Sequential is the neural-network class, Dense is
# the standard network layer
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras import optimizers # to choose more advanced optimizers like 'adam'
import numpy as np
import matplotlib.pyplot as plt # for plotting
import matplotlib
matplotlib.rcParams['figure.dpi']=300 # highres display
# for subplots within subplots:
from matplotlib import gridspec
# for nice inset colorbars: (approach changed from lecture 1 'Visualization' notebook)
from mpl_toolkits.axes_grid1.inset_locator import InsetPosition
# for updating display
# (very simple animation)
from IPython.display import clear_output
from time import sleep
# ### Functions
# In[2]:
# backpropagation and training routines
# these are now just front-ends to keras!
def apply_net(y_in): # one forward pass through the network
global Net
return(Net.predict_on_batch(y_in))
def apply_net_simple(y_in): # one forward pass through the network
return(apply_net(y_in))
def train_net(y_in,y_target): # one full training batch
# y_in is an array of size batchsize x (input-layer-size)
# y_target is an array of size batchsize x (output-layer-size)
global Net
cost=Net.train_on_batch(y_in,y_target)[0]
return(cost)
def init_layer_variables(weights,biases,activations,use_keras_init=False,eta=0.1,optimizer='sgd'):
global Weights, Biases, NumLayers, Activations
global LayerSizes, y_layer, df_layer, dw_layer, db_layer
global Net
# store the main data in global variables
Weights=weights
Biases=biases
Activations=activations
NumLayers=len(Weights)
# keras activation names can be slightly different from what I used...
# also: 'jump' is not implemented here
KerasActivation={ "sigmoid":"sigmoid", "reLU":"relu", "linear":"linear" }
Net=Sequential() # a new network ('sequential' is the simplest structure: layer by layer)
# now build up the network, layer by layer:
LayerSizes=[2]
for j in range(NumLayers):
LayerSizes.append(len(Biases[j]))
if use_keras_init: # use keras' random weight initialization approach
Net.add(Dense(len(Biases[j]), # number of neurons
input_shape=(LayerSizes[j],), # size of previous layer
activation=KerasActivation[activations[j]] # activation function
))
else:
Net.add(Dense(len(Biases[j]), # number of neurons
input_shape=(LayerSizes[j],), # size of previous layer
activation=KerasActivation[activations[j]], # activation function
weights = [ np.array(weights[j]), np.array(biases[j]) ] # the weights and biases for this layer
))
if optimizer=='adam':
the_optimizer=optimizers.Adam(lr=eta) # adaptive
else:
the_optimizer=optimizers.SGD(lr=eta) # standard gradient descent with given learning rate!
Net.compile(loss='mean_squared_error',
optimizer=the_optimizer,
metrics=['accuracy'])
# In[3]:
# visualization routines:
# some internal routines for plotting the network:
def plot_connection_line(ax,X,Y,W,vmax=1.0,linewidth=3):
t=np.linspace(0,1,20)
if W>0:
col=[0,0.4,0.8]
else:
col=[1,0.3,0]
ax.plot(X[0]+(3*t**2-2*t**3)*(X[1]-X[0]),Y[0]+t*(Y[1]-Y[0]),
alpha=abs(W)/vmax,color=col,
linewidth=linewidth)
def plot_neuron_alpha(ax,X,Y,B,size=100.0,vmax=1.0):
if B>0:
col=np.array([[0,0.4,0.8]])
else:
col=np.array([[1,0.3,0]])
ax.scatter([X],[Y],marker='o',c=col,alpha=abs(B)/vmax,s=size,zorder=10)
def plot_neuron(ax,X,Y,B,size=100.0,vmax=1.0):
if B>0:
col=np.array([[0,0.4,0.8]])
else:
col=np.array([[1,0.3,0]])
ax.scatter([X],[Y],marker='o',c=col,s=size,zorder=10)
def visualize_network(weights,biases,activations,
M=100,y0range=[-1,1],y1range=[-1,1],
size=400.0, linewidth=5.0,
weights_are_swapped=False,
layers_already_initialized=False,
plot_cost_function=None,
current_cost=None, cost_max=None, plot_target=None
):
"""
Visualize a neural network with 2 input
neurons and 1 output neuron (plot output vs input in a 2D plot)
weights is a list of the weight matrices for the
layers, where weights[j] is the matrix for the connections
from layer j to layer j+1 (where j==0 is the input)
weights[j][m,k] is the weight for input neuron k going to output neuron m
(note: internally, m and k are swapped, see the explanation of
batch processing in lecture 2)
biases[j] is the vector of bias values for obtaining the neurons in layer j+1
biases[j][k] is the bias for neuron k in layer j+1
activations is a list of the activation functions for
the different layers: choose 'linear','sigmoid',
'jump' (i.e. step-function), and 'reLU'
M is the resolution (MxM grid)
y0range is the range of y0 neuron values (horizontal axis)
y1range is the range of y1 neuron values (vertical axis)
"""
if not weights_are_swapped:
swapped_weights=[]
for j in range(len(weights)):
swapped_weights.append(np.transpose(weights[j]))
else:
swapped_weights=weights
y0,y1=np.meshgrid(np.linspace(y0range[0],y0range[1],M),np.linspace(y1range[0],y1range[1],M))
y_in=np.zeros([M*M,2])
y_in[:,0]=y0.flatten()
y_in[:,1]=y1.flatten()
# if we call visualization directly, we still
# need to initialize the 'Weights' and other
# global variables; otherwise (during training)
# all of this has already been taken care of:
if not layers_already_initialized:
init_layer_variables(swapped_weights,biases,activations)
y_out=apply_net_simple(y_in)
if plot_cost_function is None:
fig,ax=plt.subplots(ncols=2,nrows=1,figsize=(8,4))
else:
fig=plt.figure(figsize=(8,4))
gs_top = gridspec.GridSpec(nrows=1, ncols=2)
gs_left = gridspec.GridSpecFromSubplotSpec(nrows=2, ncols=1, subplot_spec=gs_top[0], height_ratios=[1.0,0.3])
ax=[ fig.add_subplot(gs_left[0]),
fig.add_subplot(gs_top[1]),
fig.add_subplot(gs_left[1]) ]
# ax[0] is network
# ax[1] is image produced by network
# ax[2] is cost function subplot
# plot the network itself:
# positions of neurons on plot:
posX=[[-0.5,+0.5]]; posY=[[0,0]]
vmax=0.0 # for finding the maximum weight
vmaxB=0.0 # for maximum bias
for j in range(len(biases)):
n_neurons=len(biases[j])
posX.append(np.array(range(n_neurons))-0.5*(n_neurons-1))
posY.append(np.full(n_neurons,j+1))
vmax=np.maximum(vmax,np.max(np.abs(weights[j])))
vmaxB=np.maximum(vmaxB,np.max(np.abs(biases[j])))
# plot connections
for j in range(len(biases)):
for k in range(len(posX[j])):
for m in range(len(posX[j+1])):
plot_connection_line(ax[0],[posX[j][k],posX[j+1][m]],
[posY[j][k],posY[j+1][m]],
swapped_weights[j][k,m],vmax=vmax,
linewidth=linewidth)
# plot neurons
for k in range(len(posX[0])): # input neurons (have no bias!)
plot_neuron(ax[0],posX[0][k],posY[0][k],
vmaxB,vmax=vmaxB,size=size)
for j in range(len(biases)): # all other neurons
for k in range(len(posX[j+1])):
plot_neuron(ax[0],posX[j+1][k],posY[j+1][k],
biases[j][k],vmax=vmaxB,size=size)
ax[0].axis('off')
# now: the output of the network
img=ax[1].imshow(np.reshape(y_out,[M,M]),origin='lower',
extent=[y0range[0],y0range[1],y1range[0],y1range[1]])
ax[1].set_xlabel(r'$y_0$')
ax[1].set_ylabel(r'$y_1$')
# axins1 = inset_axes(ax[1],
# width="40%", # width = 50% of parent_bbox width
# height="5%", # height : 5%
# loc='upper right',
# bbox_to_anchor=[0.3,0.4])
# axins1 = ax[1].inset_axes([0.5,0.8,0.45,0.1])
axins1 = plt.axes([0, 0, 1, 1])
ip = InsetPosition(ax[1], [0.25, 0.1, 0.5, 0.05])
axins1.set_axes_locator(ip)
imgmin=np.min(y_out)
imgmax=np.max(y_out)
color_bar=fig.colorbar(img, cax=axins1, orientation="horizontal",ticks=np.linspace(imgmin,imgmax,3))
cbxtick_obj = plt.getp(color_bar.ax.axes, 'xticklabels')
plt.setp(cbxtick_obj, color="white")
axins1.xaxis.set_ticks_position("bottom")
if plot_target is not None:
axins2 = plt.axes([0.01, 0.01, 0.99, 0.99])
ip = InsetPosition(ax[1], [0.75, 0.75, 0.2, 0.2])
axins2.set_axes_locator(ip)
axins2.imshow(plot_target,origin='lower')
axins2.get_xaxis().set_ticks([])
axins2.get_yaxis().set_ticks([])
if plot_cost_function is not None:
ax[2].plot(plot_cost_function)
ax[2].set_ylim([0.0,cost_max])
ax[2].set_yticks([0.0,cost_max])
ax[2].set_yticklabels(["0",'{:1.2e}'.format(cost_max)])
if current_cost is not None:
ax[2].text(0.9, 0.9, 'cost={:1.2e}'.format(current_cost), horizontalalignment='right',
verticalalignment='top', transform=ax[2].transAxes)
plt.show()
def visualize_network_training(weights,biases,activations,
target_function,
num_neurons=None,
weight_scale=1.0,
bias_scale=1.0,
yspread=1.0,
M=100,y0range=[-1,1],y1range=[-1,1],
size=400.0, linewidth=5.0,
steps=100, batchsize=10, eta=0.1,
random_init=False,
visualize_nsteps=1,
plot_target=True,
use_keras_init=False,
optimizer='sgd'):
"""
Visualize the training of a neural network.
weights, biases, and activations define the neural network
(the starting point of the optimization; for the detailed description,
see the help for visualize_network)
If you want to have layers randomly initialized, just provide
the number of neurons for each layer as 'num_neurons'. This should include
all layers, including input (2 neurons) and output (1), so num_neurons=[2,3,5,4,1] is
a valid example. In this case, weight_scale and bias_scale define the
spread of the random Gaussian variables used to initialize all weights and biases.
target_function is the name of the function that we
want to approximate; it must be possible to
evaluate this function on a batch of samples, by
calling target_function(y) on an array y of
shape [batchsize,2], where
the second index refers to the two coordinates
(input neuron values) y0 and y1. The return
value must be an array with one index, corresponding
to the batchsize. A valid example is:
def my_target(y):
return( np.sin(y[:,0]) + np.cos(y[:,1]) )
steps is the number of training steps
batchsize is the number of samples per training step
eta is the learning rate (stepsize in the gradient descent)
yspread denotes the spread of the Gaussian
used to sample points in (y0,y1)-space
visualize_n_steps>1 means skip some steps before
visualizing again (can speed up things)
plot_target=True means do plot the target function in a corner
For all the other parameters, see the help for
visualize_network
weights and biases as given here will be used
as starting points, unless you specify
random_init=True, in which case they will be
used to determine the spread of Gaussian random
variables used for initialization!
"""
global Net, Weights, Biases
if num_neurons is not None: # build weight matrices as randomly initialized
weights=[weight_scale*np.random.randn(num_neurons[j+1],num_neurons[j]) for j in range(len(num_neurons)-1)]
biases=[bias_scale*np.random.randn(num_neurons[j+1]) for j in range(len(num_neurons)-1)]
swapped_weights=[]
for j in range(len(weights)):
swapped_weights.append(np.transpose(weights[j]))
init_layer_variables(swapped_weights,biases,activations,use_keras_init=use_keras_init,eta=eta,optimizer=optimizer)
if plot_target:
y0,y1=np.meshgrid(np.linspace(y0range[0],y0range[1],M),np.linspace(y1range[0],y1range[1],M))
y=np.zeros([M*M,2])
y[:,0]=y0.flatten()
y[:,1]=y1.flatten()
plot_target_values=np.reshape(target_function(y),[M,M])
else:
plot_target_values=None
y_target=np.zeros([batchsize,1])
costs=np.zeros(steps)
for j in range(steps):
# produce samples (random points in y0,y1-space):
y_in=yspread*np.random.randn(batchsize,2)
# apply target function to those points:
y_target[:,0]=target_function(y_in)
# do one training step on this batch of samples:
costs[j]=train_net(y_in,y_target)
# now visualize the updated network:
if j%visualize_nsteps==0:
clear_output(wait=True) # for animation
if j>10:
cost_max=np.average(costs[0:j])*1.5
else:
cost_max=costs[0]
# extract weights and biases from the keras network:
for j in range(NumLayers):
Weights[j],Biases[j]=Net.layers[j].get_weights()
visualize_network(Weights,Biases,activations,
M,y0range=y0range,y1range=y1range,
size=size, linewidth=linewidth,
weights_are_swapped=True,
layers_already_initialized=True,
plot_cost_function=costs,
current_cost=costs[j],
cost_max=cost_max,
plot_target=plot_target_values)
sleep(0.1) # wait a bit before next step (probably not needed)
# ## Example 1: Training for a simple AND function
# In[4]:
def my_target(y):
return( 1.0*( (y[:,0]+y[:,1])>0) )
visualize_network_training(weights=[ [
[0.2,-0.9] # weights of 2 input neurons for single output neuron
] ],
biases=[
[0.0] # bias for single output neuron
],
target_function=my_target, # the target function to approximate
activations=[ 'sigmoid' # activation for output
],
y0range=[-3,3],y1range=[-3,3],
steps=1000, eta=.5, batchsize=200,
visualize_nsteps=10,
plot_target=True,
optimizer='adam')
# ## Example 2: Training for half a smiley (circle with two eyes)
# In[67]:
def my_target(y):
a=0.8; r=0.5; R=2.0
return( 1.0*( y[:,0]**2+y[:,1]**2<R**2 ) - 1.0*( (y[:,0]-a)**2+(y[:,1]-a)**2<r**2) - 1.0*( (y[:,0]+a)**2+(y[:,1]-a)**2<r**2 ) )
visualize_network_training(weights=[],biases=[],num_neurons=[2,30,30,1],
target_function=my_target, # the target function to approximate
activations=[ 'reLU','reLU','linear' ],
y0range=[-3,3],y1range=[-3,3],
steps=5000, eta=.1, batchsize=200,
visualize_nsteps=100,
plot_target=True,
optimizer='adam',
size=20,linewidth=2)
# ## Exercise: Extend this code so as to be able to use more advanced keras activation functions for the layers!