
Mininet-HiFi: Rapid, High Fidelity SDN Prototyping!
Nikhil Handigol*†, Brandon Heller*†, Vimal Jeyakumar*†, Bob Lantz*, Nick McKeown†

*Equal Contributors

†Stanford University!

Prototype

Interactively build, debug

using Mininet-HiFi!

Deploy

Run native, or in a slice of

a production network!

Share

Package the network as
a complete, runnable VM!

!

!

!

!

!

!

!

!

!

SDN 3

!

!

!

SDN 2

!

!

!

SDN 1

Analyze

Measure realistic

performance metrics!

Mininet-HiFi enables a rapid-prototyping workflow for building SDNs:!

Problem

Software-Defined Networks (SDNs) create complex
interactions between hosts, switches, and controllers.
Testbeds may lack sufficient visibility for debugging;
simulators may lack the desired code realism.!

Solution

Mininet-HiFi is a container-based emulator that runs a
complete network of hosts, switches, and controllers
on a single PC. It provides performance fidelity by
adding resource-isolation mechanisms.!

Data-Center TCP, or DCTCP,
modifies TCP’s congestion control
algorithm to reduce latency and
buffer usage. The topology is a
simple 2-into-1 fork, and we
measure buffer sizes.!
 !
!

Mininet-HiFi!Test 2: Multipath Routing!
Flows are commonly spread across
paths in a data center using ECMP,
but in Fat Trees, hash collisions
reduce the effective bandwidth. This
test shows the bisection bandwidth
loss for varying traffic dispersions.!

Mininet-HiFi runs networks on a single PC, using lightweight OS virtualization:!

Mininet-HiFi provides the realism to reproduce published results:!

Mininet-HiFi!

TCP (large sawtooth buffer)!

DCTCP (small buffer)!

from DCTCP paper [SIGCOMM 2010]!

Mininet!

Hardware!TCP (large sawtooth buffer)!

DCTCP (small buffer)!

Test 1: DCTCP

	

Controller!

Switches!

Links!

Hosts!

 !

!

Resource

	

Mechanism

	

Unmodified NOX, Beacon, etc.!

Open vSwitch instances!
Rate-limited virtual Ethernet pairs!

Unmodified apps in CPU-limited
process groups!

To the controller, each virtual resource appears identical to its corresponding physical one.!

=!

!"#$%
&"%%'('")

*"+)(,-.$/
&"%%'('")

&"-. 0 &"-. 1 &"-. 2 &"-. 3

455 0

6%"+ 4
6%"+ 7
6%"+ &
6%"+ *

455 1 455 2

Figure 2: Examples of ECMP collisions resulting in reduced bisection bandwidth. Unused links omitted for clarity.

what may achieve good performance in a particular net-
work setting, both to minimize development and debug-
ging time and to enable easy porting from one network
environment to another.

Therefore we focus in this paper on generating traffic
patterns that stress and saturate the network, and com-
paring the performance of Hedera to current hash-based
multipath forwarding schemes.

2.2 Current Data Center Multipathing

To take advantage of multiple paths in data center topolo-
gies, the current state of the art is to use Equal-Cost
Multi-Path forwarding (ECMP) [2]. ECMP-enabled
switches are configured with several possible forwarding
paths for a given subnet. When a packet with multiple
candidate paths arrives, it is forwarded on the one that
corresponds to a hash of selected fields of that packet’s
headers modulo the number of paths [21], splitting load
to each subnet across multiple paths. This way, a flow’s
packets all take the same path, and their arrival order is
maintained (TCP’s performance is significantly reduced
when packet reordering occurs because it interprets that
as a sign of packet loss due to network congestion).

A closely-related method is Valiant Load Balancing
(VLB) [16, 17, 34], which essentially guarantees equal-
spread load-balancing in a mesh network by bouncing
individual packets from a source switch in the mesh off
of randomly chosen intermediate “core” switches, which
finally forward those packets to their destination switch.
Recent realizations of VLB [16] perform randomized
forwarding on a per-flow rather than on a per-packet ba-
sis to preserve packet ordering. Note that per-flow VLB
becomes effectively equivalent to ECMP.

A key limitation of ECMP is that two or more large,
long-lived flows can collide on their hash and end up on
the same output port, creating an avoidable bottleneck as
illustrated in Figure 2. Here, we consider a sample com-
munication pattern among a subset of hosts in a multi-
rooted, 1 Gbps network topology. We identify two types

of collisions caused by hashing. First, TCP flows A and
B interfere locally at switch Agg0 due to a hash collision
and are capped by the outgoing link’s 1Gbps capacity to
Core0. Second, with downstream interference, Agg1 and
Agg2 forward packets independently and cannot foresee
the collision at Core2 for flows C and D.

In this example, all four TCP flows could have reached
capacities of 1Gbps with improved forwarding; flow
A could have been forwarded to Core1, and flow D
could have been forwarded to Core3. But due to these
collisions, all four flows are bottlenecked at a rate of
500Mbps each, a 50% bisection bandwidth loss.

! " #! #" $!
!

#!

$!

%!

&!

"!

'!

!"
##
$%&
$'
%#(
)*
%"
&$
'+
&,
-
%,
*.
$/0

$12
"3
$%,
(+
45

64"-#$7(2$."#*

Figure 3: Example of ECMP bisection bandwidth losses vs.

number of TCP flows per host for a k=48 fat-tree.

Note that the performance of ECMP and flow-based
VLB intrinsically depends on flow size and the num-
ber of flows per host. Hash-based forwarding performs
well in cases where hosts in the network perform all-to-
all communication with one another simultaneously, or
with individual flows that last only a few RTTs. Non-
uniform communication patterns, especially those in-
volving transfers of large blocks of data, require more
careful scheduling of flows to avoid network bottlenecks.

from Hedera paper [NSDI 2010]!

