
A	
 Network	
 in	
 a	
 Laptop:	

Rapid	
 Prototyping	
 for	

So7ware-­‐Defined	
 Networks	

Bob	
 Lantz,	
 Brandon	
 Heller,	
 Nick	
 McKeown	

Stanford	
 University	

HotNets	
 2010,	
 10/20/10	
 	

1	

2	

Wouldn’t	
 it	
 be	
 amazing…	

if	
 systems	
 papers	
 were	
 runnable.	

3	

Wouldn’t	
 it	
 be	
 amazing…	

If	
 systems	
 papers	
 made	
 	

replicaSng	
 their	
 results,	

modifying	
 the	
 described	
 system,	

and	
 sharing	
 it	
 with	
 others…	

…	
 as	
 easy	
 as	
 downloading	
 a	
 file.	

4	

idea	
 prototype	
 deploy	
 on	

hardware	

share	
 with	
 others	

with	
 no	
 code	
 changes!?!	

Wouldn’t	
 it	
 be	
 amazing…	

5	

if	
 network	
 systems	
 papers	
 were	
 more	
 	

than	
 runnable.	

Mininet:	
 a	
 plaYorm	
 for	
 rapid	

network	
 prototyping.	

scales	
 to	
 usefully	
 large	
 nets	

runs	
 unmodified	
 applica4ons	

provides	
 path	
 to	
 hardware	

facilitates	
 sharing	

6	

[don’t	
 download	
 now!	
 save	
 the	
 WiFi!]	

140+	
 users	

45+	
 on	
 mailing	
 list	

20+	
 insStuSons	

open	
 source	
 (BSD	
 license)	

openflow.org/mininet	

7	

Demo	

8	

Demo	
 Topology:	
 Fat	
 Tree	

!"#$%$

&"'($

)**'(*+,"-$

.#*($

!"#$/$!"#0 !"#1

described	
 in	
 Scalable	
 Commodity	
 Data	
 Center,	
 SIGCOMM	
 2008,	
 Al	
 Fares	
 et	
 al.	

9	

!"#$%$

&"'($

!"#$)$!"#$*$!"#$+$

,--'(-./"0$

1#-($

(1)	
 share-­‐able	

(2)	
 runs	
 on	
 hardware	

10	

11	

[based	
 on	
 a	
 true	
 story]	

Date	
 	

Nov	
 2009:	
 deadline	
 in	
 3	
 months	

12	

Resources:	
 	

a	
 laptop	

13	

Goal:	
 	

build/eval/demo	
 a	

realisSc	
 new	
 networked	

system	

14	

Why	
 not	
 a	
 real	
 system?	

switch	
 s1	

host	
 h3	
 host	
 h2	

+	
 as	
 real	
 as	
 it	
 gets	

-­‐	
 	
 a	
 pain	
 to	
 reconfigure	

15	

VM2	

Why	
 not	
 networked	
 virtual	
 machines?	

+	
 easier	
 topology	
 changes	

-­‐  scalability	

switch	
 s1	

host	
 h3	
 host	
 h2	

VM3	

VM1	

16	

state	

Why	
 not	
 a	
 simulator?	

+	
 good	
 visibility	

-­‐  no	
 path	
 to	
 hardware	

switch	
 s1	

host	
 h3	
 host	
 h2	

state	

state	

process	

17	

Problem	
 1:	
 	

Want	
 scale	
 with	

unmodified	
 applicaSons.	

→	
 Use	
 lightweight,	
 OS-­‐
level	
 virtualizaSon.	

18	

OS-­‐level	
 VirtualizaSon	

Same	
 system,	
 different	
 view.	
 	
 Almost	
 zero	
 overhead.	

ex.	
 IMUNES,	
 Emulab 	
 	

19	

process	

filesystem	

hostname	

user	
 IDs	

network	

user	

kernel	
 filesystem	

hostname	

user	
 IDs	

network	

one	
 OS	
 kernel	

process	

Problem	
 2:	
 	

Want	
 a	
 smooth	
 path	
 to	

hardware	
 deployment.	

→	
 Use	
 So7ware-­‐Defined	

Networking.	

20	

Hardware	

Feature	

Hardware	

Hardware	

Hardware	

Hardware	

OS	

OS	

OS	

OS	

OS	

Network	
 OS	

Feature	
 Feature	

Feature	

Feature	

Feature	

Feature	

21	

So7ware-­‐Defined	
 Network	

OpenFlow	

22	

Packet	

Forwarding	
 	

Packet	

Forwarding	
 	

Packet	

Forwarding	
 	

Packet	

Forwarding	
 	

Packet	

Forwarding	
 	

Network	
 OS	

Feature	
 Feature	

Mininet	

Walkthrough	

23	

switch	
 s1	

host	
 h3	
 host	
 h2	

controller	

24	

$> mn --topo minimal \ !
 --switch ovsk \ !
 --controller ref!

root	
 network	
 namespace	

mn!

run	
 Mininet	

launcher	

25	

$> mn --topo minimal \ !
 --switch ovsk \ !
 --controller ref!

host	
 h3	
 host	
 h2	

root	
 network	
 namespace	

Hosts	

create	
 bash	
 processes	

mn!

pipes	

26	

/bin/bash! /bin/bash!

$> mn --topo minimal \ !
 --switch ovsk \ !
 --controller ref!

h2	
 namespace	

root	
 network	
 namespace	

Hosts	

unshare(CLONE_NEWNET)!

h3	
 namespace	

/bin/bash!

mn!

pipes	

27	

/bin/bash!

$> mn --topo minimal \ !
 --switch ovsk \ !
 --controller ref!

h2	
 namespace	

root	
 network	
 namespace	

Links	

ip link add	

h3	
 namespace	

pipes	

mn!
veth1	
 veth3	

veth0	
 veth2	

veth	
 pairs	

pipes	

28	

/bin/bash! /bin/bash!

$> mn --topo minimal \ !
 --switch ovsk \ !
 --controller ref!

h2	
 namespace	

root	
 network	
 namespace	

Links	

ip link set name	

h3	
 namespace	

pipes	

mn!
h2-­‐eth0	
 h3-­‐eth0	

s1-­‐eth1	
 s1-­‐eth2	

veth	
 pairs	

pipes	

29	

/bin/bash! /bin/bash!

$> mn --topo minimal \ !
 --switch ovsk \ !
 --controller ref!

h2	
 namespace	

root	
 network	
 namespace	

Links	

h3	
 namespace	

pipes	

mn!

h2-­‐eth0	
 h3-­‐eth0	

s1-­‐eth1	
 s1-­‐eth2	

veth	
 pairs	

pipes	

ip link set netns	

30	

/bin/bash! /bin/bash!

$> mn --topo minimal \ !
 --switch ovsk \ !
 --controller ref!

h2	
 namespace	

root	
 network	
 namespace	

Switch	

create	
 OpenFlow	
 Switch	

h3	
 namespace	

ofdatapath! ofprotocol!

mn!

s1-­‐eth1	
 s1-­‐eth2	

veth	
 pairs	

unix	

socket	

raw	

sockets	

pipes	

h2-­‐eth0	
 h3-­‐eth0	

31	

/bin/bash! /bin/bash!

$> mn --topo minimal \ !
 --switch ovsk \ !
 --controller ref!

h2	
 namespace	

root	
 network	
 namespace	

Controller	

create	
 controller	

h3	
 namespace	

/bin/bash!

mn!

s1-­‐eth1	
 s1-­‐eth2	

veth	
 pairs	

pipes	

h2-­‐eth0	
 h3-­‐eth0	

32	

/bin/bash!

ofdatapath! ofprotocol!
unix	

socket	

raw	

sockets	

controller!

h2	
 namespace	

root	
 network	
 namespace	

h3	
 namespace	

mn!

s1-­‐eth1	
 s1-­‐eth2	

veth	
 pairs	

pipes	

h2-­‐eth0	
 h3-­‐eth0	

Virtual	
 Machine	

33	

/bin/bash! /bin/bash!

ofdatapath! ofprotocol!
unix	

socket	

raw	

sockets	

controller!

Mininet	
 example	
 commands	

Create	
 a	
 network	
 using	
 mn	
 launcher:	

mn --switch ovsk --controller nox --topo \ tree,depth=2,fanout=8
--test pingAll!

Interact	
 with	
 a	
 network	
 using	
 CLI:	

mininet> h2 ping h3!
mininet> h2 py dir(locals())!

Customize	
 a	
 network	
 w/API:	

from mininet.net import Mininet!
from mininet.topolib import TreeTopo!
tree4 = TreeTopo(depth=2,fanout=2)!
net = Mininet(topo=tree4)!
net.start()!
h1, h4 = net.hosts[0], net.hosts[3]!
print h1.cmd(’ping -c1 %s’ % h4.IP())!
net.stop()!

34	

Apps	
 made	
 with	
 the	
 Mininet	
 API	

35	

EvaluaSon	

36	

Startup/Shutdown/Memory	

S (Switches) User(Mbps) Kernel(Mbps)

1 445 2120
10 49.9 940
20 25.7 573
40 12.6 315
60 6.2 267
80 4.15 217
100 2.96 167

Table 1: Mininet end-to-end bandwidth, measured with iperf
through linear chains of user-space (OpenFlow reference) and ker-
nel (Open vSwitch) switches.

graphical applications, two of which are shown in fig-
ures 2 and 3. The hope is that the Mininet API will
prove useful for system-level testing and experimenta-
tion, test network management, instructional materials,
and applications that will surprise the authors.

3.4 Sharing a Network

Mininet is distributed as a VM with all dependen-
cies pre-installed, runnable on common virtual machine
monitors such as VMware, Xen and VirtualBox. The
virtual machine provides a convenient container for dis-
tribution; once a prototype has been developed, the VM
image may be distributed to others to run, examine
and modify. A complete, compressed Mininet VM is
about 800 MB. Mininet can also be installed natively
on Linux distributions that ship with CONFIG NET NS

enabled, such as Ubuntu 10.04, without replacing the
kernel.

3.5 Running on Hardware

To successfully port to hardware on the first try, every
Mininet-emulated component must act in the same way
as its corresponding physical one. The virtual topol-
ogy should match the physical one; virtual Ethernet
pairs must be replaced by link-level Ethernet connec-
tivity. Hosts emulated as processes should be replaced
by hosts with their own OS image. In addition, each em-
ulated OpenFlow switch should be replaced by a phys-
ical one configured to point to the controller. How-
ever, the controller does not need to change. When
Mininet is running, the controller “sees” a physical net-
work of switches, made possible by an interface with
well-defined state semantics. With proxy objects repre-
senting OpenFlow datapaths on physical switches and
SSH servers on physical hosts, the CLI enables interac-
tion with the network in the same way as before, with
unmodified test scripts.

4. SCALABILITY

Lightweight virtualization is the key to scaling to
hundreds of nodes while preserving interactive perfor-
mance. In this section, we measure overall topology
creation times, available bandwidth, and microbench-
marks for individual operations.

Table 2 shows the time required to create a variety

Topology H S Setup(s) Stop(s) Mem(MB)
Minimal 2 1 1.0 0.5 6
Linear(100) 100 100 70.7 70.0 112
VL2(4, 4) 80 10 31.7 14.9 73
FatTree(4) 16 20 17.2 22.3 66
FatTree(6) 54 45 54.3 56.3 102
Mesh(10, 10) 40 100 82.3 92.9 152
Tree(4ˆ4) 256 85 168.4 83.9 233
Tree(16ˆ2) 256 17 139.8 39.3 212
Tree(32ˆ2) 1024 33 817.8 163.6 492

Table 2: Mininet topology benchmarks: setup time, stop time and
memory usage for networks of H hosts and S Open vSwitch kernel
switches, tested in a Debian 5/Linux 2.6.33.1 VM on VMware
Fusion 3.0 on a MacBook Pro (2.4 GHz intel Core 2 Duo/6 GB).
Even in the largest configurations, hosts and switches start up in
less than one second each.

Operation Time (ms)

Create a node (host/switch/controller) 10
Run command on a host (’echo hello’) 0.3
Add link between two nodes 260
Delete link between two nodes 416
Start user space switch (OpenFlow reference) 29
Stop user space switch (OpenFlow reference) 290
Start kernel switch (Open vSwitch) 332
Stop kernel switch (Open vSwitch) 540

Table 3: Time for basic Mininet operations. Mininet’s startup
and shutdown performance is dominated by management of vir-
tual Ethernet interfaces in the Linux (2.6.33.1) kernel and ip
link utility and Open vSwitch startup/shutdown time.

of topologies with Mininet. Larger topologies which
cannot fit in memory with system virtualization can
start up on Mininet. In practice, waiting 10 seconds for
a full fat tree to start is quite reasonable (and faster
than the boot time for hardware switches).

Mininet scales to the large topologies shown (over
1000 hosts) because it virtualizes less and shares more.
The file system, user ID space, process ID space, kernel,
device drivers, shared libraries and other common code
are shared between processes and managed by the op-
erating system. The roughly 1 MB overhead for a host
is the memory cost of a shell process and small net-
work namespace state; this total is almost two orders
of magnitude less than the 70 MB required per host
for the memory image and translation state of a lean
VM. In fact, of the topologies shown in Table 2, only
the smallest one would fit in the memory of a typical
laptop if system virtualization were used. Mininet also
provides a usable amount of bandwidth, as shown in
Table 1: 2-3 Gbps through one switch, or more than 10
Gbps aggregate internal bandwidth through a chain of
100 switches.

Table 3 shows the time consumed by individual op-
erations when building a topology. Surprisingly, link
addition and deletion are expensive operations, taking
roughly 250 ms and 400 ms, respectively. As we gain
a better understanding of Mininet’s resource usage and
interaction with the Linux kernel, we hope to further
improve its performance and contribute optimizations
back to the kernel as well as Open vSwitch.

4

lots	
 of	
 switches	
 &	
 hosts	

w/reasonable	
 amounts	
 of	
 memory	

37	

Microbenchmarks	

S (Switches) User(Mbps) Kernel(Mbps)

1 445 2120
10 49.9 940
20 25.7 573
40 12.6 315
60 6.2 267
80 4.15 217
100 2.96 167

Table 1: Mininet end-to-end bandwidth, measured with iperf
through linear chains of user-space (OpenFlow reference) and ker-
nel (Open vSwitch) switches.

graphical applications, two of which are shown in fig-
ures 2 and 3. The hope is that the Mininet API will
prove useful for system-level testing and experimenta-
tion, test network management, instructional materials,
and applications that will surprise the authors.

3.4 Sharing a Network

Mininet is distributed as a VM with all dependen-
cies pre-installed, runnable on common virtual machine
monitors such as VMware, Xen and VirtualBox. The
virtual machine provides a convenient container for dis-
tribution; once a prototype has been developed, the VM
image may be distributed to others to run, examine
and modify. A complete, compressed Mininet VM is
about 800 MB. Mininet can also be installed natively
on Linux distributions that ship with CONFIG NET NS

enabled, such as Ubuntu 10.04, without replacing the
kernel.

3.5 Running on Hardware

To successfully port to hardware on the first try, every
Mininet-emulated component must act in the same way
as its corresponding physical one. The virtual topol-
ogy should match the physical one; virtual Ethernet
pairs must be replaced by link-level Ethernet connec-
tivity. Hosts emulated as processes should be replaced
by hosts with their own OS image. In addition, each em-
ulated OpenFlow switch should be replaced by a phys-
ical one configured to point to the controller. How-
ever, the controller does not need to change. When
Mininet is running, the controller “sees” a physical net-
work of switches, made possible by an interface with
well-defined state semantics. With proxy objects repre-
senting OpenFlow datapaths on physical switches and
SSH servers on physical hosts, the CLI enables interac-
tion with the network in the same way as before, with
unmodified test scripts.

4. SCALABILITY

Lightweight virtualization is the key to scaling to
hundreds of nodes while preserving interactive perfor-
mance. In this section, we measure overall topology
creation times, available bandwidth, and microbench-
marks for individual operations.

Table 2 shows the time required to create a variety

Topology H S Setup(s) Stop(s) Mem(MB)
Minimal 2 1 1.0 0.5 6
Linear(100) 100 100 70.7 70.0 112
VL2(4, 4) 80 10 31.7 14.9 73
FatTree(4) 16 20 17.2 22.3 66
FatTree(6) 54 45 54.3 56.3 102
Mesh(10, 10) 40 100 82.3 92.9 152
Tree(4ˆ4) 256 85 168.4 83.9 233
Tree(16ˆ2) 256 17 139.8 39.3 212
Tree(32ˆ2) 1024 33 817.8 163.6 492

Table 2: Mininet topology benchmarks: setup time, stop time and
memory usage for networks of H hosts and S Open vSwitch kernel
switches, tested in a Debian 5/Linux 2.6.33.1 VM on VMware
Fusion 3.0 on a MacBook Pro (2.4 GHz intel Core 2 Duo/6 GB).
Even in the largest configurations, hosts and switches start up in
less than one second each.

Operation Time (ms)

Create a node (host/switch/controller) 10
Run command on a host (’echo hello’) 0.3
Add link between two nodes 260
Delete link between two nodes 416
Start user space switch (OpenFlow reference) 29
Stop user space switch (OpenFlow reference) 290
Start kernel switch (Open vSwitch) 332
Stop kernel switch (Open vSwitch) 540

Table 3: Time for basic Mininet operations. Mininet’s startup
and shutdown performance is dominated by management of vir-
tual Ethernet interfaces in the Linux (2.6.33.1) kernel and ip
link utility and Open vSwitch startup/shutdown time.

of topologies with Mininet. Larger topologies which
cannot fit in memory with system virtualization can
start up on Mininet. In practice, waiting 10 seconds for
a full fat tree to start is quite reasonable (and faster
than the boot time for hardware switches).

Mininet scales to the large topologies shown (over
1000 hosts) because it virtualizes less and shares more.
The file system, user ID space, process ID space, kernel,
device drivers, shared libraries and other common code
are shared between processes and managed by the op-
erating system. The roughly 1 MB overhead for a host
is the memory cost of a shell process and small net-
work namespace state; this total is almost two orders
of magnitude less than the 70 MB required per host
for the memory image and translation state of a lean
VM. In fact, of the topologies shown in Table 2, only
the smallest one would fit in the memory of a typical
laptop if system virtualization were used. Mininet also
provides a usable amount of bandwidth, as shown in
Table 1: 2-3 Gbps through one switch, or more than 10
Gbps aggregate internal bandwidth through a chain of
100 switches.

Table 3 shows the time consumed by individual op-
erations when building a topology. Surprisingly, link
addition and deletion are expensive operations, taking
roughly 250 ms and 400 ms, respectively. As we gain
a better understanding of Mininet’s resource usage and
interaction with the Linux kernel, we hope to further
improve its performance and contribute optimizations
back to the kernel as well as Open vSwitch.

4

link	
 management	
 is	
 slow	

38	

Bandwidth	

S (Switches) User(Mbps) Kernel(Mbps)

1 445 2120
10 49.9 940
20 25.7 573
40 12.6 315
60 6.2 267
80 4.15 217
100 2.96 167

Table 1: Mininet end-to-end bandwidth, measured with iperf
through linear chains of user-space (OpenFlow reference) and ker-
nel (Open vSwitch) switches.

graphical applications, two of which are shown in fig-
ures 2 and 3. The hope is that the Mininet API will
prove useful for system-level testing and experimenta-
tion, test network management, instructional materials,
and applications that will surprise the authors.

3.4 Sharing a Network

Mininet is distributed as a VM with all dependen-
cies pre-installed, runnable on common virtual machine
monitors such as VMware, Xen and VirtualBox. The
virtual machine provides a convenient container for dis-
tribution; once a prototype has been developed, the VM
image may be distributed to others to run, examine
and modify. A complete, compressed Mininet VM is
about 800 MB. Mininet can also be installed natively
on Linux distributions that ship with CONFIG NET NS

enabled, such as Ubuntu 10.04, without replacing the
kernel.

3.5 Running on Hardware

To successfully port to hardware on the first try, every
Mininet-emulated component must act in the same way
as its corresponding physical one. The virtual topol-
ogy should match the physical one; virtual Ethernet
pairs must be replaced by link-level Ethernet connec-
tivity. Hosts emulated as processes should be replaced
by hosts with their own OS image. In addition, each em-
ulated OpenFlow switch should be replaced by a phys-
ical one configured to point to the controller. How-
ever, the controller does not need to change. When
Mininet is running, the controller “sees” a physical net-
work of switches, made possible by an interface with
well-defined state semantics. With proxy objects repre-
senting OpenFlow datapaths on physical switches and
SSH servers on physical hosts, the CLI enables interac-
tion with the network in the same way as before, with
unmodified test scripts.

4. SCALABILITY

Lightweight virtualization is the key to scaling to
hundreds of nodes while preserving interactive perfor-
mance. In this section, we measure overall topology
creation times, available bandwidth, and microbench-
marks for individual operations.

Table 2 shows the time required to create a variety

Topology H S Setup(s) Stop(s) Mem(MB)
Minimal 2 1 1.0 0.5 6
Linear(100) 100 100 70.7 70.0 112
VL2(4, 4) 80 10 31.7 14.9 73
FatTree(4) 16 20 17.2 22.3 66
FatTree(6) 54 45 54.3 56.3 102
Mesh(10, 10) 40 100 82.3 92.9 152
Tree(4ˆ4) 256 85 168.4 83.9 233
Tree(16ˆ2) 256 17 139.8 39.3 212
Tree(32ˆ2) 1024 33 817.8 163.6 492

Table 2: Mininet topology benchmarks: setup time, stop time and
memory usage for networks of H hosts and S Open vSwitch kernel
switches, tested in a Debian 5/Linux 2.6.33.1 VM on VMware
Fusion 3.0 on a MacBook Pro (2.4 GHz intel Core 2 Duo/6 GB).
Even in the largest configurations, hosts and switches start up in
less than one second each.

Operation Time (ms)

Create a node (host/switch/controller) 10
Run command on a host (’echo hello’) 0.3
Add link between two nodes 260
Delete link between two nodes 416
Start user space switch (OpenFlow reference) 29
Stop user space switch (OpenFlow reference) 290
Start kernel switch (Open vSwitch) 332
Stop kernel switch (Open vSwitch) 540

Table 3: Time for basic Mininet operations. Mininet’s startup
and shutdown performance is dominated by management of vir-
tual Ethernet interfaces in the Linux (2.6.33.1) kernel and ip
link utility and Open vSwitch startup/shutdown time.

of topologies with Mininet. Larger topologies which
cannot fit in memory with system virtualization can
start up on Mininet. In practice, waiting 10 seconds for
a full fat tree to start is quite reasonable (and faster
than the boot time for hardware switches).

Mininet scales to the large topologies shown (over
1000 hosts) because it virtualizes less and shares more.
The file system, user ID space, process ID space, kernel,
device drivers, shared libraries and other common code
are shared between processes and managed by the op-
erating system. The roughly 1 MB overhead for a host
is the memory cost of a shell process and small net-
work namespace state; this total is almost two orders
of magnitude less than the 70 MB required per host
for the memory image and translation state of a lean
VM. In fact, of the topologies shown in Table 2, only
the smallest one would fit in the memory of a typical
laptop if system virtualization were used. Mininet also
provides a usable amount of bandwidth, as shown in
Table 1: 2-3 Gbps through one switch, or more than 10
Gbps aggregate internal bandwidth through a chain of
100 switches.

Table 3 shows the time consumed by individual op-
erations when building a topology. Surprisingly, link
addition and deletion are expensive operations, taking
roughly 250 ms and 400 ms, respectively. As we gain
a better understanding of Mininet’s resource usage and
interaction with the Linux kernel, we hope to further
improve its performance and contribute optimizations
back to the kernel as well as Open vSwitch.

4

usable	
 amount	
 of	
 bandwidth	

39	

RaSo	

~5x	

~50x	

Case	
 Studies	

40	

Research	
 Examples	

•  Ripcord:	
 modular	
 data	
 center	

•  Asterix:	
 wide-­‐area	
 load	
 balancing	

•  SCAFFOLD:	
 new	
 internet	
 architecture	

•  Distributed	
 snapshot	
 demo	

41	

Unexpected	
 Uses	

•  Tutorials	

•  Whole-­‐network	
 regression	
 suites	

•  Bug	
 replicaSon	

42	

LimitaSons	

43	

Inherent	
 LimitaSons	

•  OS-­‐level	
 virtualizaSon	
 	
 one	
 kernel	
 only	

•  Linux	
 containers	
 	
 Linux	
 programs	
 only	

•  Cannot	
 match	
 the	
 introspecSon	
 of	
 an	
 event-­‐
driven	
 simulaSon	

44	

	
 	
 host	
 process	

links	

links	

links	

switch	
 process	

p	
 >>	
 c	
 ?	
 Sme	
 mulSplexing	

Issues:	
 performance	
 predictability,	
 isolaSon	

p	
 	

processes	

c	
 cores	

Performance	
 Fidelity	

45	

Wouldn’t	
 it	
 be	
 amazing…	

if	
 systems	
 papers	
 were	
 runnable.	

46	

Wouldn’t	
 it	
 be	
 amazing…	

If	
 systems	
 papers	
 made	
 	

replicaSng	
 their	
 results,	

modifying	
 the	
 described	
 system,	

and	
 sharing	
 it	
 with	
 others…	

…	
 as	
 easy	
 as	
 downloading	
 a	
 file.	

47	

idea	
 prototype	
 deploy	
 on	

hardware	

share	
 with	
 others	

with	
 no	
 code	
 changes!?!	

Wouldn’t	
 it	
 be	
 amazing…	

48	

if	
 network	
 systems	
 papers	
 were	
 more	
 	

than	
 runnable.	

“A	
 Network	
 in	
 a	
 Laptop…”	
 	

is	
 a	
 runnable	
 paper	

…which	
 itself	
 describes	
 how	

to	
 make	
 other	
 runnable	

papers.	

49	

Mininet	

•  Rapid	
 prototyping	

•  Scalable	

•  Shareable	

•  FuncSonally	
 correct	

•  Path	
 to	
 hardware	

50	

openflow.org/mininet	

enables	
 	

“runnable	
 papers”	

for	
 a	
 subset	
 of	

networking	

51	

The	
 SDN	
 Approach	

Separate	
 control	
 from	
 the	
 datapath	

–  i.e.	
 separate	
 policy	
 from	
 mechanism	

Datapath:	
 Define	
 minimal	
 network	
 instrucSon	
 set	

– A	
 set	
 of	
 “plumbling	
 primiSves”	

– A	
 narrow	
 interface:	
 e.g.	
 OpenFlow	

Control:	
 Define	
 a	
 network-­‐wide	
 OS	

– An	
 API	
 that	
 others	
 can	
 develop	
 on	

52	

How	
 to	
 get	
 performance	
 fidelity?	

•  Careful	
 process-­‐to-­‐core	
 allocaSon	

•  Bandwidth	
 limits	

•  Scheduling	
 prioriSes	

•  Real-­‐Sme	
 scheduling	

•  Scheduling	
 groups	
 w/resource	
 isolaSon	

53	

process	

Why	
 not	
 processes?	

+	
 scales	
 beser	

-­‐  breaks	
 applicaSons	

switch	
 s1	

host	
 h3	
 host	
 h2	

process	

process	

54	

