-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathframe-binarization-left-branching.tex
71 lines (71 loc) · 1.73 KB
/
frame-binarization-left-branching.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
% SPDX-License-Identifier: CC-BY-4.0
% Copyright 2018 Toni Dietze
\documentclass[beamer]{standalone}
\input{preamble.tex}
\begin{document}
\begin{standaloneframe}{\jobname}
\begin{tikzpicture}
[ baseline = (base.base)
, level distance=2em
, level 1/.style={sibling distance=3em}
, inner sep = 0
, outer sep = 0.25em
]
% δ(α, γ(α), β)
\node {\(σ\)}
child {node {\(α\)}
}
child {node {\(γ\)}
child {node {\(α\)}
}
}
child {node (base) {\(β\)}
};
\end{tikzpicture}
\hfill
\begin{tikzpicture}[baseline = (base.base)]
\node[draw, shape = single arrow] (base) {\strut binarize};
\end{tikzpicture}
\hfill
\begin{tikzpicture}
[ baseline = (base.base)
, level distance=2em
, level 2/.style={sibling distance=7em}
, level 4/.style={sibling distance=3em}
, inner sep = 0
, outer sep = 0.25em
]
% σ(\symId(\symCons(α(\symId(\symNull)), \symCons(γ(\symId(\symCons(α(\symId(\symNull)),\symNull))),\symCons(β(\symId(\symNull)), \symNull)))))
\node {\(σ\)}
child {node[gray] {\(\symCons\)}
child {node {\(α\)}
child {node[gray] (base) {\(\symNull\)}
}
}
child {node[gray] {\(\symCons\)}
child {node {\(γ\)}
child {node[gray] {\(\symCons\)}
child {node {\(α\)}
child {node[gray] {\(\symNull\)}
}
}
child {node[gray] {\(\symNull\)}
}
}
}
child {node[gray] {\(\symCons\)}
child {node {\(β\)}
child {node[gray] {\(\symNull\)}
}
}
child {node[gray] {\(\symNull\)}
}
}
}
};
\end{tikzpicture}
\begin{block}<2->{I analyzed three binarization strategies motivated by}
\printfullcite{2005MatsuzakiMiyaoTsujii}
\end{block}
\end{standaloneframe}
\end{document}