-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdemo.py
118 lines (107 loc) · 4.74 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import numpy as np
import torch
from configs.config_utils import CONFIG
import argparse
from dataset.front3d_recon_dataset import Front3D_Recon_Dataset
from dataset.front3d_bg_dataset import FRONT_bg_dataset
from torch.utils.data import DataLoader
from models.instPIFu.InstPIFu_net import InstPIFu
from models.bg_PIFu.BGPIFu_net import BGPIFu_Net
import datetime
import os
import time
import cv2
def dataset2dataloader(dataset):
dataloader = DataLoader(dataset,
num_workers=1,
batch_size=1,
shuffle=False
)
return dataloader
def parse_args():
'''PARAMETERS'''
parser = argparse.ArgumentParser('Refer-it-in-RGBD demo')
parser.add_argument('--testid', type=str, default='rendertask7522', help='train, test or demo.')
return parser.parse_args()
if __name__=="__main__":
args=parse_args()
'''need to specify which weight files to load in the .yaml file'''
instPIFu_config_path="./configs/test_instPIFu.yaml"
bg_config_path="./configs/test_bg_PIFu.yaml"
instPIFu_config=CONFIG(instPIFu_config_path).config
bg_config=CONFIG(bg_config_path).config
instPIFu_config['data']['test_class_name']="test_all"
instPIFu_config['data']['use_pred_pose']=True #to use predict pose or not
instPIFu_model=InstPIFu(instPIFu_config).cuda()
instPIFu_checkpoints=torch.load(instPIFu_config["weight"])
instPIFu_net_weight=instPIFu_checkpoints['net']
instPIFu_new_net_weight={}
for key in instPIFu_net_weight:
if key.startswith("module."):
k_ = key[7:]
instPIFu_new_net_weight[k_] = instPIFu_net_weight[key]
instPIFu_model.load_state_dict(instPIFu_new_net_weight)
instPIFu_model.eval()
inst_PIFu_dataset=Front3D_Recon_Dataset(instPIFu_config,"test",testid=args.testid)
instPIFu_loader=dataset2dataloader(inst_PIFu_dataset)
bg_model=BGPIFu_Net(bg_config).cuda()
bg_checkpoints=torch.load(bg_config['weight'])
bg_net_weight=bg_checkpoints['net']
bg_new_net_weight={}
for key in bg_net_weight:
if key.startswith("module."):
k_=key[7:]
bg_new_net_weight[k_]=bg_net_weight[key]
bg_model.load_state_dict(bg_new_net_weight)
bg_model.eval()
bg_dataset=FRONT_bg_dataset(bg_config,"test",testid=args.testid)
bg_loader=dataset2dataloader(bg_dataset)
save_folder=os.path.join("outputs",args.testid)
if os.path.exists(save_folder)==False:
os.makedirs(save_folder)
'''inference all objects'''
start_t=time.time()
for batch_id, data_batch in enumerate(instPIFu_loader):
for key in data_batch:
if isinstance(data_batch[key], list) == False:
data_batch[key] = data_batch[key].float().cuda()
with torch.no_grad():
mesh = instPIFu_model.extract_mesh(data_batch, instPIFu_config['data']['marching_cube_resolution'])
rot_matrix=data_batch["rot_matrix"][0].cpu().numpy()
obj_cam_center=data_batch["obj_cam_center"][0].cpu().numpy()
bbox_size=data_batch["bbox_size"][0].cpu().numpy()
#pitch=data_batch["pitch"][0].cpu().numpy()
'''transform mesh to camera coordinate'''
obj_vert=np.asarray(mesh.vertices)
obj_vert=obj_vert/2*bbox_size
obj_vert=np.dot(obj_vert,rot_matrix.T)
obj_vert[:,0:2]=-obj_vert[:,0:2]
obj_vert+=obj_cam_center
mesh.vertices=np.asarray(obj_vert.copy())
object_id=data_batch["obj_id"][0]
save_path=os.path.join(save_folder,args.testid+"_%s"%(object_id)+".ply")
print("saving to %s"%(save_path))
mesh.export(save_path)
msg = "{:0>8},[{}/{}]".format(
str(datetime.timedelta(seconds=round(time.time() - start_t))),
batch_id + 1,
len(instPIFu_loader),
)
print(msg)
whole_image=data_batch["whole_image"][0].cpu()*torch.tensor([0.229,0.224,0.225])[:,None,None]+\
torch.tensor([0.485,0.456,0.406])[:,None,None]
whole_image=(whole_image.permute(1,2,0).numpy()*255.0).astype(np.uint8)
save_path=os.path.join(save_folder,"input.jpg")
#print(save_path)
cv2.imwrite(save_path,whole_image)
'''background inference will be added'''
'''inference background'''
for batch_id, data_batch in enumerate(bg_loader):
for key in data_batch:
if isinstance(data_batch[key], list) == False:
data_batch[key] = data_batch[key].float().cuda()
with torch.no_grad():
bg_mesh = bg_model.extract_mesh(data_batch, bg_config['data']['marching_cube_resolution'])
save_path=os.path.join(save_folder,"bg.ply")
print("saving to %s"%(save_path))
bg_mesh.export(save_path)