-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
46 lines (36 loc) · 1.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from net_utils.train_test_utils import load_device, get_model, \
get_dataloader,CheckpointIO,get_trainer,get_optimizer,load_scheduler
import torch.nn as nn
def run(cfg):
'''Load save path'''
cfg.log_string('Data save path: %s' % (cfg.save_path))
checkpoint=CheckpointIO(cfg)
'''Load device'''
cfg.log_string('Loading device settings.')
device = load_device(cfg)
'''Load data'''
cfg.log_string('Loading dataset.')
train_loader = get_dataloader(cfg.config, mode='train')
test_loader = get_dataloader(cfg.config, mode='test')
'''Load net'''
cfg.log_string('Loading model.')
net = get_model(cfg.config, device=device).cuda().float()
checkpoint.register_modules(net=net)
'''Load optimizer'''
cfg.log_string('Loading optimizer.')
optimizer = get_optimizer(config=cfg.config, net=net)
# model, optimizer = amp.initialize(net, optimizer, opt_level="O1")
checkpoint.register_modules(opt=optimizer)
net = nn.DataParallel(net)
checkpoint.register_modules(net=net)
'''Load scheduler'''
cfg.log_string('Loading optimizer scheduler.')
scheduler = load_scheduler(config=cfg.config, optimizer=optimizer, train_loader=train_loader)
checkpoint.register_modules(sch=scheduler)
'''Load trainer'''
cfg.log_string('Loading trainer.')
trainer = get_trainer(cfg.config)
'''Start to train'''
cfg.log_string('Start to train.')
trainer(cfg, net, optimizer,scheduler,train_loader=train_loader, test_loader=test_loader,device=device,checkpoint=checkpoint)
cfg.log_string('Training finished.')