-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathget_ITOAR.py
191 lines (142 loc) · 6.3 KB
/
get_ITOAR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# -*- coding: utf-8 -*-
"""
@author: Adrien Wehrlé, GEUS (Geological Survey of Denmark and Greenland)
Computes the Intrinsic Top of Atmosphere Reflectance (ITOAR) from effective
Solar Zenith Angles (SZA) and Observation Zenith Angles (OZA) for a given mosaic
and given bands using ArcticDEM-derived slopes and aspects.
"""
import numpy as np
import rasterio
import os
import argparse
from osgeo import gdal, gdalconst
parser = argparse.ArgumentParser()
parser.add_argument('inpath')
parser.add_argument('inpath_adem')
args = parser.parse_args()
# slope threshold in degrees to create slope_flag
# Default is set to 15° based on the "small slope approximation"
# (Picard et al, 2020)
slope_thres = 15
def get_effective_angle(variable):
'''
Determines effective Solar and Observation Zenith angles to compute the
Intrinsic BOA Reflectance (ITOAR).
INPUTS:
variable: name of the variable to compute (here SZA or OZA) [string]
OUTPUTS:
{variable}_eff: effective angles [array]
slope_flag: slope mask based on the "small slope approximation"
(Picard et al, 2020). 1 for slope<=threshold,
255 (no data) for slope>threshold [array]
{variable}_eff.tif: tiff file containing the effective angles [.tif]
if variable is set to SZA:
slope.tif: tiff file containing the slope [.tif]
slope_flag.tif: tiff file containing the slope_flag [.tif]
aspect.tif: tiff file containing the slope aspect [.tif]
'''
# load variables
try:
angle_name = variable + '.tif'
angle = rasterio.open(args.inpath + variable + '.tif').read(1)
except:
print('ERROR: %s is missing' % angle_name)
return
try:
saa = rasterio.open(args.inpath + 'SAA.tif').read(1)
except:
print('ERROR: SAA.tif is missing')
return
# load slope and aspect
slope = rasterio.open(args.inpath_adem + 'Greenland_S.tif').read(1)
aspect = rasterio.open(args.inpath_adem + 'Greenland_A.tif').read(1)
# create a flag based on the "small slope approximation"
slope_flag = slope.copy()
slope_flag[np.where(slope <= slope_thres)] = 1
slope_flag[np.where(slope > slope_thres)] = 255
# convert slope, aspect, angle and SAA to radians
angle_rad = np.deg2rad(angle)
saa_rad = np.deg2rad(saa)
slope_rad = np.deg2rad(slope)
aspect_rad = np.deg2rad(aspect)
# compute effective angle
mu = np.cos(angle_rad) * np.cos(slope_rad) + np.sin(angle_rad) * np.sin(slope_rad) * \
np.cos(saa_rad - aspect_rad)
eff = np.arccos(mu)
angle_eff = np.rad2deg(eff)
# load initial metadata to save the output
profile = rasterio.open(args.inpath + variable + '.tif', 'r').profile
angle_eff = np.nan_to_num(angle_eff) # nan no data don't pass
# profile.update(nodata=0)
# write output file
output_filename = args.inpath + variable + '_eff' + '.tif'
try:
with rasterio.open(output_filename, 'w', **profile) as dst:
dst.write(angle_eff, 1)
except ValueError:
profile = {k: v for k, v in profile.items() if k not in
['blockxsize', 'blockysize']}
with rasterio.open(output_filename, 'w', **profile) as dst:
dst.write(angle_eff, 1)
# write slope_flag
profile.update(nodata=255)
slope_flag_filename = args.inpath + 'slope_flag_' + str(slope_thres) \
+ '_degrees.tif'
with rasterio.open(slope_flag_filename, 'w', **profile) as dst:
dst.write(slope_flag, 1)
# return slope, aspect and slope flag only for SZA (only once)
if variable == 'SZA':
return angle_eff, slope, aspect, slope_flag
if variable == 'OZA':
return angle_eff
def get_ITOAR(slope, aspect):
'''
Determines the Intrinsic Top Of Atmosphere Reflectance (ITOAR) for given bands
as inputs for sice.py.
INPUTS:
slope: slope raster [array]
aspect: slope aspect raster [array]
OUTPUTS:
ir_TOA_{band_num}.tif: tiff file containing the intrinsic TOA for each
band_num [.tif]
'''
# load solar and viewing zenith angles (flat)
sza = rasterio.open(args.inpath + 'SZA.tif').read(1)
oza = rasterio.open(args.inpath + 'OZA.tif').read(1)
# load solar azimuth angle (flat)
saa = rasterio.open(args.inpath + 'SAA.tif').read(1)
# load TOAR (flat)
toar17 = rasterio.open(args.inpath + 'r_TOA_17.tif').read(1)
toar21 = rasterio.open(args.inpath + 'r_TOA_21.tif').read(1)
# save profile as base for ITOAR file
profile = rasterio.open(args.inpath + 'r_TOA_21.tif').profile
# compute ITOARs
def compute_ITOAR(toar):
mu0 = np.cos(np.deg2rad(sza))
mu = np.cos(np.deg2rad(oza))
mu0_ov = mu0 * np.cos(np.deg2rad(slope)) + np.sin(np.deg2rad(sza))\
* np.sin(np.deg2rad(slope)) * np.cos(np.deg2rad(saa) - np.deg2rad(aspect))
itoar = toar * mu0 / mu0_ov
return itoar
itoar17 = compute_ITOAR(toar17)
itoar21 = compute_ITOAR(toar21)
# save ITOARs
with rasterio.open(args.inpath + 'ir_TOA_17.tif', 'w', **profile) as dst:
dst.write(itoar17, 1)
with rasterio.open(args.inpath + 'ir_TOA_21.tif', 'w', **profile) as dst:
dst.write(itoar21, 1)
# get effective SZA and OZA
SZA_eff, slope, aspect, slope_flag = get_effective_angle(variable='SZA')
OZA_eff = get_effective_angle(variable='OZA')
# get ITOAR
get_ITOAR(slope, aspect)
# remove initial angles
os.remove(args.inpath + 'SZA.tif')
os.remove(args.inpath + 'OZA.tif')
os.remove(args.inpath + 'r_TOA_21.tif')
os.remove(args.inpath + 'r_TOA_17.tif')
# rename corrected angles
os.rename(args.inpath + 'SZA_eff.tif', args.inpath + 'SZA.tif')
os.rename(args.inpath + 'OZA_eff.tif', args.inpath + 'OZA.tif')
os.rename(args.inpath + 'ir_TOA_21.tif', args.inpath + 'r_TOA_21.tif')
os.rename(args.inpath + 'ir_TOA_17.tif', args.inpath + 'r_TOA_17.tif')