-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecg.py
323 lines (270 loc) · 9.78 KB
/
recg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#!/usr/bin/env python
# _*_ coding: utf-8 _*_
# @Time : 2021/10/21 下午5:29
# @Author : Galonestar
# @Version : V 1.0
# @File : recg.py
# @desc :
import cv2
import collections
import random
import numpy as np
import numpy as np
import joblib
parameters = {
"epochs": 10000,
"eta": 0.5,
"mini_batch_size": 2,
"threshold": 0.001
}
# 处理图片
def get_color(frame):
print('go in get_color')
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
maxsum = -100
color = None
color_dict = getColorList()
for d in color_dict:
mask = cv2.inRange(hsv, color_dict[d][0], color_dict[d][1])
cv2.imwrite(d + '.jpg', mask)
binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
binary = cv2.dilate(binary, None, iterations=2)
img, cnts, hiera = cv2.findContours(binary.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
sum = 0
for c in cnts:
sum += cv2.contourArea(c)
if sum > maxsum:
maxsum = sum
color = d
return color
def getColorList():
dict = collections.defaultdict(list)
# 黑色
lower_black = np.array([0, 0, 0])
upper_black = np.array([180, 255, 46])
color_list = []
color_list.append(lower_black)
color_list.append(upper_black)
dict['black'] = color_list
# 灰色
lower_gray = np.array([0, 0, 46])
upper_gray = np.array([180, 43, 220])
color_list = []
color_list.append(lower_gray)
color_list.append(upper_gray)
dict['gray'] = color_list
# 白色
lower_white = np.array([0, 0, 221])
upper_white = np.array([180, 30, 255])
color_list = []
color_list.append(lower_white)
color_list.append(upper_white)
dict['white'] = color_list
# 红色
lower_red = np.array([156, 43, 46])
upper_red = np.array([180, 255, 255])
color_list = []
color_list.append(lower_red)
color_list.append(upper_red)
dict['red'] = color_list
# 红色2
lower_red = np.array([0, 43, 46])
upper_red = np.array([10, 255, 255])
color_list = []
color_list.append(lower_red)
color_list.append(upper_red)
dict['red2'] = color_list
# 橙色
lower_orange = np.array([11, 43, 46])
upper_orange = np.array([25, 255, 255])
color_list = []
color_list.append(lower_orange)
color_list.append(upper_orange)
dict['orange'] = color_list
# 黄色
lower_yellow = np.array([26, 43, 46])
upper_yellow = np.array([34, 255, 255])
color_list = []
color_list.append(lower_yellow)
color_list.append(upper_yellow)
dict['yellow'] = color_list
# 绿色
lower_green = np.array([35, 43, 46])
upper_green = np.array([77, 255, 255])
color_list = []
color_list.append(lower_green)
color_list.append(upper_green)
dict['green'] = color_list
# 青色
lower_cyan = np.array([78, 43, 46])
upper_cyan = np.array([99, 255, 255])
color_list = []
color_list.append(lower_cyan)
color_list.append(upper_cyan)
dict['cyan'] = color_list
# 蓝色
lower_blue = np.array([100, 43, 46])
upper_blue = np.array([124, 255, 255])
color_list = []
color_list.append(lower_blue)
color_list.append(upper_blue)
dict['blue'] = color_list
# 紫色
lower_purple = np.array([125, 43, 46])
upper_purple = np.array([155, 255, 255])
color_list = []
color_list.append(lower_purple)
color_list.append(upper_purple)
dict['purple'] = color_list
return dict
# 待识别图片
img = cv2.imread('img.jpg', 1)
# 区域,可改为for循环,同时识别多个区域
x2, y2, w2, h2 = (426, 909, 37, 37)
# print(x2, y2, w2, h2)
img_roi2 = img[int(y2):int(y2 + h2), int(x2):int(x2 + w2)]
cv2.rectangle(img=img, pt1=(x2, y2), pt2=(x2 + w2, y2 + h2), color=(0, 0, 255), thickness=1)
color = get_color(img_roi2)
cv2.putText(img, '{0}'.format(color),
(x2 + 50, y2),
cv2.FONT_HERSHEY_SIMPLEX,
1.2, (0, 0, 255), 4,
cv2.LINE_AA)
cv2.imshow('roi', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
class NeuralNetwork(object):
def __init__(self, layer_dimensions):
# the number of the layers in NeuralNetwork
self.no_of_layers = len(layer_dimensions)
self.layer_dimensions = layer_dimensions
# Custom weight initialization (course 4, Neural Networks) with mu=0 and std = 1/sqrt(number of connections for that neuron)
self.biases = [np.random.randn(y, 1) for y in layer_dimensions[1:]]
self.weights = [np.random.randn(y, x) / np.sqrt(x)
for x, y in zip(layer_dimensions[:-1], layer_dimensions[1:])]
def feedforward(self, a):
"""This function is only used to get activations for evaluation"""
for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w, a) + b)
return a
def fit(self, training_data, epochs, eta=0.5, mini_batch_size=1, threshold=0.001):
no_of_mini_batches = len(training_data)//mini_batch_size
if len(training_data) % mini_batch_size > 0:
no_of_mini_batches += 1
for j in range(epochs):
# shuffle
random.shuffle(training_data)
for i in range(0, no_of_mini_batches):
mini_batch = training_data[i *
mini_batch_size: (i + 1)*mini_batch_size]
self.update_mini_batch(mini_batch, eta, len(training_data))
# testing accuracy
nailed_cases = self.get_nailed_cases(training_data)
cost = self.calculate_cost(training_data)
print(
f"Epoch {j}: {nailed_cases}/{len(training_data)}, cost: {cost}\n")
if cost <= threshold:
break
def get_predictions(self, X):
return [np.argmax(self.feedforward(x)) for x in X]
def update_mini_batch(self, mini_batch, eta, training_data_length):
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:
delta_nabla_b, delta_nabla_w = self.back_propagation(x, y)
nabla_b = [nb + dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw + dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
# Update weights and biases
self.weights = [w + vw for w, vw in zip(self.weights, nabla_w)]
self.biases = [b + vb for b, vb in zip(self.biases, nabla_b)]
def back_propagation(self, x, y):
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
# feedforward
activation = x
activations = [x] # list to store all the activations, layer by layer
zs = [] # list to store all the z vectors, layer by layer
for b, w in zip(self.biases, self.weights):
z = np.dot(w, activation) + b
zs.append(z)
activation = sigmoid(z)
activations.append(activation)
delta = (y - activations[-1]) * sigmoid_prime(zs[-1])
nabla_b[-1] = delta
nabla_w[-1] = np.dot(delta, activations[-2].transpose())
for l in range(2, self.no_of_layers):
z = zs[-l]
sp = sigmoid_prime(z)
delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
nabla_b[-l] = delta
nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
return (nabla_b, nabla_w)
def get_nailed_cases(self, test_data):
"""Returns how many cases it nailed from the test_data"""
test_results = [(np.argmax(self.feedforward(x)), np.argmax(y))
for (x, y) in test_data]
return sum(int(x == y) for (x, y) in test_results)
def calculate_cost(self, training_data):
truth = [x[1] for x in training_data]
outputs = [self.feedforward(x[0]) for x in training_data]
suma = 0
for y, t in zip(outputs, truth):
cost_for_this_instance = (y - t)**2
suma += sum(cost_for_this_instance)
return suma/(2 * len(outputs))
def sigmoid(z):
"""The sigmoid function."""
return 1.0/(1.0+np.exp(-z))
def sigmoid_prime(z):
"""Derivative of the sigmoid function."""
return sigmoid(z)*(1-sigmoid(z))
def save_results(model, model_name):
print('Serializing model...')
with open(model_name, 'wb') as f:
joblib.dump(model, f)
def get_saved_model(model_name='model.pkl'):
print('Deserializing model...')
with open(model_name, 'rb') as f:
model = joblib.load(f)
return model
def get_option():
option = int(input('Enter 1 for training, 2 for prediction: '))
if option == 1:
return 'train'
elif option == 2:
return 'predict'
return None
def get_train_data():
train_data = []
with open('segments.data', 'r') as f:
for index, line in enumerate(f):
if index is 0:
continue
values = line.split(',')
values = [int(x) for x in values]
x = np.array(values[:7]).reshape((7, 1))
y = np.array(values[7:]).reshape((10, 1))
train_data.append((x, y))
return train_data
def train_network():
print('Getting train data...')
train_data = get_train_data()
model = NeuralNetwork((7, 10, 10))
print('Training network...')
model.fit(training_data=train_data, **parameters)
save_results(model, "model.pkl")
def predict_led():
model = get_saved_model()
x = input('Enter the digit values separated by space: ')
x = [int(val) for val in x.split(' ')]
x = np.array(x).reshape((7, 1))
predictions = model.get_predictions([x])
print(f'I think this is a {predictions[0]}')
def main():
option = get_option()
if option == 'train':
train_network()
elif option == 'predict':
predict_led()
if __name__ == '__main__':
main()